MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsflf1o Structured version   Visualization version   GIF version

Theorem dvdsflf1o 25764
Description: A bijection from the numbers less than 𝑁 / 𝐴 to the multiples of 𝐴 less than 𝑁. Useful for some sum manipulations. (Contributed by Mario Carneiro, 3-May-2016.)
Hypotheses
Ref Expression
dvdsflf1o.1 (𝜑𝐴 ∈ ℝ)
dvdsflf1o.2 (𝜑𝑁 ∈ ℕ)
dvdsflf1o.f 𝐹 = (𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁))) ↦ (𝑁 · 𝑛))
Assertion
Ref Expression
dvdsflf1o (𝜑𝐹:(1...(⌊‘(𝐴 / 𝑁)))–1-1-onto→{𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥})
Distinct variable groups:   𝑥,𝑛,𝐴   𝑛,𝑁,𝑥   𝜑,𝑛
Allowed substitution hints:   𝜑(𝑥)   𝐹(𝑥,𝑛)

Proof of Theorem dvdsflf1o
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 dvdsflf1o.f . 2 𝐹 = (𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁))) ↦ (𝑁 · 𝑛))
2 breq2 5070 . . 3 (𝑥 = (𝑁 · 𝑛) → (𝑁𝑥𝑁 ∥ (𝑁 · 𝑛)))
3 dvdsflf1o.2 . . . . 5 (𝜑𝑁 ∈ ℕ)
4 elfznn 12937 . . . . 5 (𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁))) → 𝑛 ∈ ℕ)
5 nnmulcl 11662 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) → (𝑁 · 𝑛) ∈ ℕ)
63, 4, 5syl2an 597 . . . 4 ((𝜑𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁)))) → (𝑁 · 𝑛) ∈ ℕ)
7 dvdsflf1o.1 . . . . . . . . 9 (𝜑𝐴 ∈ ℝ)
87, 3nndivred 11692 . . . . . . . 8 (𝜑 → (𝐴 / 𝑁) ∈ ℝ)
9 fznnfl 13231 . . . . . . . 8 ((𝐴 / 𝑁) ∈ ℝ → (𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁))) ↔ (𝑛 ∈ ℕ ∧ 𝑛 ≤ (𝐴 / 𝑁))))
108, 9syl 17 . . . . . . 7 (𝜑 → (𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁))) ↔ (𝑛 ∈ ℕ ∧ 𝑛 ≤ (𝐴 / 𝑁))))
1110simplbda 502 . . . . . 6 ((𝜑𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁)))) → 𝑛 ≤ (𝐴 / 𝑁))
124adantl 484 . . . . . . . 8 ((𝜑𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁)))) → 𝑛 ∈ ℕ)
1312nnred 11653 . . . . . . 7 ((𝜑𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁)))) → 𝑛 ∈ ℝ)
147adantr 483 . . . . . . 7 ((𝜑𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁)))) → 𝐴 ∈ ℝ)
153nnred 11653 . . . . . . . 8 (𝜑𝑁 ∈ ℝ)
1615adantr 483 . . . . . . 7 ((𝜑𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁)))) → 𝑁 ∈ ℝ)
173nngt0d 11687 . . . . . . . 8 (𝜑 → 0 < 𝑁)
1817adantr 483 . . . . . . 7 ((𝜑𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁)))) → 0 < 𝑁)
19 lemuldiv2 11521 . . . . . . 7 ((𝑛 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → ((𝑁 · 𝑛) ≤ 𝐴𝑛 ≤ (𝐴 / 𝑁)))
2013, 14, 16, 18, 19syl112anc 1370 . . . . . 6 ((𝜑𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁)))) → ((𝑁 · 𝑛) ≤ 𝐴𝑛 ≤ (𝐴 / 𝑁)))
2111, 20mpbird 259 . . . . 5 ((𝜑𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁)))) → (𝑁 · 𝑛) ≤ 𝐴)
223nnzd 12087 . . . . . . 7 (𝜑𝑁 ∈ ℤ)
23 elfzelz 12909 . . . . . . 7 (𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁))) → 𝑛 ∈ ℤ)
24 zmulcl 12032 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑁 · 𝑛) ∈ ℤ)
2522, 23, 24syl2an 597 . . . . . 6 ((𝜑𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁)))) → (𝑁 · 𝑛) ∈ ℤ)
26 flge 13176 . . . . . 6 ((𝐴 ∈ ℝ ∧ (𝑁 · 𝑛) ∈ ℤ) → ((𝑁 · 𝑛) ≤ 𝐴 ↔ (𝑁 · 𝑛) ≤ (⌊‘𝐴)))
2714, 25, 26syl2anc 586 . . . . 5 ((𝜑𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁)))) → ((𝑁 · 𝑛) ≤ 𝐴 ↔ (𝑁 · 𝑛) ≤ (⌊‘𝐴)))
2821, 27mpbid 234 . . . 4 ((𝜑𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁)))) → (𝑁 · 𝑛) ≤ (⌊‘𝐴))
297flcld 13169 . . . . . 6 (𝜑 → (⌊‘𝐴) ∈ ℤ)
3029adantr 483 . . . . 5 ((𝜑𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁)))) → (⌊‘𝐴) ∈ ℤ)
31 fznn 12976 . . . . 5 ((⌊‘𝐴) ∈ ℤ → ((𝑁 · 𝑛) ∈ (1...(⌊‘𝐴)) ↔ ((𝑁 · 𝑛) ∈ ℕ ∧ (𝑁 · 𝑛) ≤ (⌊‘𝐴))))
3230, 31syl 17 . . . 4 ((𝜑𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁)))) → ((𝑁 · 𝑛) ∈ (1...(⌊‘𝐴)) ↔ ((𝑁 · 𝑛) ∈ ℕ ∧ (𝑁 · 𝑛) ≤ (⌊‘𝐴))))
336, 28, 32mpbir2and 711 . . 3 ((𝜑𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁)))) → (𝑁 · 𝑛) ∈ (1...(⌊‘𝐴)))
34 dvdsmul1 15631 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) → 𝑁 ∥ (𝑁 · 𝑛))
3522, 23, 34syl2an 597 . . 3 ((𝜑𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁)))) → 𝑁 ∥ (𝑁 · 𝑛))
362, 33, 35elrabd 3682 . 2 ((𝜑𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁)))) → (𝑁 · 𝑛) ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥})
37 breq2 5070 . . . . . . 7 (𝑥 = 𝑚 → (𝑁𝑥𝑁𝑚))
3837elrab 3680 . . . . . 6 (𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥} ↔ (𝑚 ∈ (1...(⌊‘𝐴)) ∧ 𝑁𝑚))
3938simprbi 499 . . . . 5 (𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥} → 𝑁𝑚)
4039adantl 484 . . . 4 ((𝜑𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥}) → 𝑁𝑚)
41 elrabi 3675 . . . . . . 7 (𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥} → 𝑚 ∈ (1...(⌊‘𝐴)))
4241adantl 484 . . . . . 6 ((𝜑𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥}) → 𝑚 ∈ (1...(⌊‘𝐴)))
43 elfznn 12937 . . . . . 6 (𝑚 ∈ (1...(⌊‘𝐴)) → 𝑚 ∈ ℕ)
4442, 43syl 17 . . . . 5 ((𝜑𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥}) → 𝑚 ∈ ℕ)
453adantr 483 . . . . 5 ((𝜑𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥}) → 𝑁 ∈ ℕ)
46 nndivdvds 15616 . . . . 5 ((𝑚 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑁𝑚 ↔ (𝑚 / 𝑁) ∈ ℕ))
4744, 45, 46syl2anc 586 . . . 4 ((𝜑𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥}) → (𝑁𝑚 ↔ (𝑚 / 𝑁) ∈ ℕ))
4840, 47mpbid 234 . . 3 ((𝜑𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥}) → (𝑚 / 𝑁) ∈ ℕ)
49 fznnfl 13231 . . . . . . 7 (𝐴 ∈ ℝ → (𝑚 ∈ (1...(⌊‘𝐴)) ↔ (𝑚 ∈ ℕ ∧ 𝑚𝐴)))
507, 49syl 17 . . . . . 6 (𝜑 → (𝑚 ∈ (1...(⌊‘𝐴)) ↔ (𝑚 ∈ ℕ ∧ 𝑚𝐴)))
5150simplbda 502 . . . . 5 ((𝜑𝑚 ∈ (1...(⌊‘𝐴))) → 𝑚𝐴)
5241, 51sylan2 594 . . . 4 ((𝜑𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥}) → 𝑚𝐴)
5344nnred 11653 . . . . 5 ((𝜑𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥}) → 𝑚 ∈ ℝ)
547adantr 483 . . . . 5 ((𝜑𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥}) → 𝐴 ∈ ℝ)
5515adantr 483 . . . . 5 ((𝜑𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥}) → 𝑁 ∈ ℝ)
5617adantr 483 . . . . 5 ((𝜑𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥}) → 0 < 𝑁)
57 lediv1 11505 . . . . 5 ((𝑚 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → (𝑚𝐴 ↔ (𝑚 / 𝑁) ≤ (𝐴 / 𝑁)))
5853, 54, 55, 56, 57syl112anc 1370 . . . 4 ((𝜑𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥}) → (𝑚𝐴 ↔ (𝑚 / 𝑁) ≤ (𝐴 / 𝑁)))
5952, 58mpbid 234 . . 3 ((𝜑𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥}) → (𝑚 / 𝑁) ≤ (𝐴 / 𝑁))
608adantr 483 . . . 4 ((𝜑𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥}) → (𝐴 / 𝑁) ∈ ℝ)
61 fznnfl 13231 . . . 4 ((𝐴 / 𝑁) ∈ ℝ → ((𝑚 / 𝑁) ∈ (1...(⌊‘(𝐴 / 𝑁))) ↔ ((𝑚 / 𝑁) ∈ ℕ ∧ (𝑚 / 𝑁) ≤ (𝐴 / 𝑁))))
6260, 61syl 17 . . 3 ((𝜑𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥}) → ((𝑚 / 𝑁) ∈ (1...(⌊‘(𝐴 / 𝑁))) ↔ ((𝑚 / 𝑁) ∈ ℕ ∧ (𝑚 / 𝑁) ≤ (𝐴 / 𝑁))))
6348, 59, 62mpbir2and 711 . 2 ((𝜑𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥}) → (𝑚 / 𝑁) ∈ (1...(⌊‘(𝐴 / 𝑁))))
6444nncnd 11654 . . . . 5 ((𝜑𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥}) → 𝑚 ∈ ℂ)
6564adantrl 714 . . . 4 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁))) ∧ 𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥})) → 𝑚 ∈ ℂ)
663nncnd 11654 . . . . 5 (𝜑𝑁 ∈ ℂ)
6766adantr 483 . . . 4 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁))) ∧ 𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥})) → 𝑁 ∈ ℂ)
6812nncnd 11654 . . . . 5 ((𝜑𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁)))) → 𝑛 ∈ ℂ)
6968adantrr 715 . . . 4 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁))) ∧ 𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥})) → 𝑛 ∈ ℂ)
703nnne0d 11688 . . . . 5 (𝜑𝑁 ≠ 0)
7170adantr 483 . . . 4 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁))) ∧ 𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥})) → 𝑁 ≠ 0)
7265, 67, 69, 71divmuld 11438 . . 3 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁))) ∧ 𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥})) → ((𝑚 / 𝑁) = 𝑛 ↔ (𝑁 · 𝑛) = 𝑚))
73 eqcom 2828 . . 3 (𝑛 = (𝑚 / 𝑁) ↔ (𝑚 / 𝑁) = 𝑛)
74 eqcom 2828 . . 3 (𝑚 = (𝑁 · 𝑛) ↔ (𝑁 · 𝑛) = 𝑚)
7572, 73, 743bitr4g 316 . 2 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁))) ∧ 𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥})) → (𝑛 = (𝑚 / 𝑁) ↔ 𝑚 = (𝑁 · 𝑛)))
761, 36, 63, 75f1o2d 7399 1 (𝜑𝐹:(1...(⌊‘(𝐴 / 𝑁)))–1-1-onto→{𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wne 3016  {crab 3142   class class class wbr 5066  cmpt 5146  1-1-ontowf1o 6354  cfv 6355  (class class class)co 7156  cc 10535  cr 10536  0cc0 10537  1c1 10538   · cmul 10542   < clt 10675  cle 10676   / cdiv 11297  cn 11638  cz 11982  ...cfz 12893  cfl 13161  cdvds 15607
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-sup 8906  df-inf 8907  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-n0 11899  df-z 11983  df-uz 12245  df-fz 12894  df-fl 13163  df-dvds 15608
This theorem is referenced by:  dvdsflsumcom  25765  logfac2  25793
  Copyright terms: Public domain W3C validator