MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnmulcl Structured version   Visualization version   GIF version

Theorem nnmulcl 10887
Description: Closure of multiplication of positive integers. (Contributed by NM, 12-Jan-1997.)
Assertion
Ref Expression
nnmulcl ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 · 𝐵) ∈ ℕ)

Proof of Theorem nnmulcl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6532 . . . . 5 (𝑥 = 1 → (𝐴 · 𝑥) = (𝐴 · 1))
21eleq1d 2668 . . . 4 (𝑥 = 1 → ((𝐴 · 𝑥) ∈ ℕ ↔ (𝐴 · 1) ∈ ℕ))
32imbi2d 328 . . 3 (𝑥 = 1 → ((𝐴 ∈ ℕ → (𝐴 · 𝑥) ∈ ℕ) ↔ (𝐴 ∈ ℕ → (𝐴 · 1) ∈ ℕ)))
4 oveq2 6532 . . . . 5 (𝑥 = 𝑦 → (𝐴 · 𝑥) = (𝐴 · 𝑦))
54eleq1d 2668 . . . 4 (𝑥 = 𝑦 → ((𝐴 · 𝑥) ∈ ℕ ↔ (𝐴 · 𝑦) ∈ ℕ))
65imbi2d 328 . . 3 (𝑥 = 𝑦 → ((𝐴 ∈ ℕ → (𝐴 · 𝑥) ∈ ℕ) ↔ (𝐴 ∈ ℕ → (𝐴 · 𝑦) ∈ ℕ)))
7 oveq2 6532 . . . . 5 (𝑥 = (𝑦 + 1) → (𝐴 · 𝑥) = (𝐴 · (𝑦 + 1)))
87eleq1d 2668 . . . 4 (𝑥 = (𝑦 + 1) → ((𝐴 · 𝑥) ∈ ℕ ↔ (𝐴 · (𝑦 + 1)) ∈ ℕ))
98imbi2d 328 . . 3 (𝑥 = (𝑦 + 1) → ((𝐴 ∈ ℕ → (𝐴 · 𝑥) ∈ ℕ) ↔ (𝐴 ∈ ℕ → (𝐴 · (𝑦 + 1)) ∈ ℕ)))
10 oveq2 6532 . . . . 5 (𝑥 = 𝐵 → (𝐴 · 𝑥) = (𝐴 · 𝐵))
1110eleq1d 2668 . . . 4 (𝑥 = 𝐵 → ((𝐴 · 𝑥) ∈ ℕ ↔ (𝐴 · 𝐵) ∈ ℕ))
1211imbi2d 328 . . 3 (𝑥 = 𝐵 → ((𝐴 ∈ ℕ → (𝐴 · 𝑥) ∈ ℕ) ↔ (𝐴 ∈ ℕ → (𝐴 · 𝐵) ∈ ℕ)))
13 nncn 10872 . . . 4 (𝐴 ∈ ℕ → 𝐴 ∈ ℂ)
14 mulid1 9890 . . . . . 6 (𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴)
1514eleq1d 2668 . . . . 5 (𝐴 ∈ ℂ → ((𝐴 · 1) ∈ ℕ ↔ 𝐴 ∈ ℕ))
1615biimprd 236 . . . 4 (𝐴 ∈ ℂ → (𝐴 ∈ ℕ → (𝐴 · 1) ∈ ℕ))
1713, 16mpcom 37 . . 3 (𝐴 ∈ ℕ → (𝐴 · 1) ∈ ℕ)
18 nnaddcl 10886 . . . . . . . 8 (((𝐴 · 𝑦) ∈ ℕ ∧ 𝐴 ∈ ℕ) → ((𝐴 · 𝑦) + 𝐴) ∈ ℕ)
1918ancoms 467 . . . . . . 7 ((𝐴 ∈ ℕ ∧ (𝐴 · 𝑦) ∈ ℕ) → ((𝐴 · 𝑦) + 𝐴) ∈ ℕ)
20 nncn 10872 . . . . . . . . 9 (𝑦 ∈ ℕ → 𝑦 ∈ ℂ)
21 ax-1cn 9847 . . . . . . . . . . 11 1 ∈ ℂ
22 adddi 9878 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 · (𝑦 + 1)) = ((𝐴 · 𝑦) + (𝐴 · 1)))
2321, 22mp3an3 1404 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝐴 · (𝑦 + 1)) = ((𝐴 · 𝑦) + (𝐴 · 1)))
2414oveq2d 6540 . . . . . . . . . . 11 (𝐴 ∈ ℂ → ((𝐴 · 𝑦) + (𝐴 · 1)) = ((𝐴 · 𝑦) + 𝐴))
2524adantr 479 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝐴 · 𝑦) + (𝐴 · 1)) = ((𝐴 · 𝑦) + 𝐴))
2623, 25eqtrd 2640 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝐴 · (𝑦 + 1)) = ((𝐴 · 𝑦) + 𝐴))
2713, 20, 26syl2an 492 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝐴 · (𝑦 + 1)) = ((𝐴 · 𝑦) + 𝐴))
2827eleq1d 2668 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝑦 ∈ ℕ) → ((𝐴 · (𝑦 + 1)) ∈ ℕ ↔ ((𝐴 · 𝑦) + 𝐴) ∈ ℕ))
2919, 28syl5ibr 234 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝑦 ∈ ℕ) → ((𝐴 ∈ ℕ ∧ (𝐴 · 𝑦) ∈ ℕ) → (𝐴 · (𝑦 + 1)) ∈ ℕ))
3029exp4b 629 . . . . 5 (𝐴 ∈ ℕ → (𝑦 ∈ ℕ → (𝐴 ∈ ℕ → ((𝐴 · 𝑦) ∈ ℕ → (𝐴 · (𝑦 + 1)) ∈ ℕ))))
3130pm2.43b 52 . . . 4 (𝑦 ∈ ℕ → (𝐴 ∈ ℕ → ((𝐴 · 𝑦) ∈ ℕ → (𝐴 · (𝑦 + 1)) ∈ ℕ)))
3231a2d 29 . . 3 (𝑦 ∈ ℕ → ((𝐴 ∈ ℕ → (𝐴 · 𝑦) ∈ ℕ) → (𝐴 ∈ ℕ → (𝐴 · (𝑦 + 1)) ∈ ℕ)))
333, 6, 9, 12, 17, 32nnind 10882 . 2 (𝐵 ∈ ℕ → (𝐴 ∈ ℕ → (𝐴 · 𝐵) ∈ ℕ))
3433impcom 444 1 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 · 𝐵) ∈ ℕ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1474  wcel 1976  (class class class)co 6524  cc 9787  1c1 9790   + caddc 9792   · cmul 9794  cn 10864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2229  ax-ext 2586  ax-sep 4700  ax-nul 4709  ax-pow 4761  ax-pr 4825  ax-un 6821  ax-resscn 9846  ax-1cn 9847  ax-icn 9848  ax-addcl 9849  ax-addrcl 9850  ax-mulcl 9851  ax-mulrcl 9852  ax-mulcom 9853  ax-addass 9854  ax-mulass 9855  ax-distr 9856  ax-i2m1 9857  ax-1ne0 9858  ax-1rid 9859  ax-rrecex 9861  ax-cnre 9862
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2458  df-mo 2459  df-clab 2593  df-cleq 2599  df-clel 2602  df-nfc 2736  df-ne 2778  df-ral 2897  df-rex 2898  df-reu 2899  df-rab 2901  df-v 3171  df-sbc 3399  df-csb 3496  df-dif 3539  df-un 3541  df-in 3543  df-ss 3550  df-pss 3552  df-nul 3871  df-if 4033  df-pw 4106  df-sn 4122  df-pr 4124  df-tp 4126  df-op 4128  df-uni 4364  df-iun 4448  df-br 4575  df-opab 4635  df-mpt 4636  df-tr 4672  df-eprel 4936  df-id 4940  df-po 4946  df-so 4947  df-fr 4984  df-we 4986  df-xp 5031  df-rel 5032  df-cnv 5033  df-co 5034  df-dm 5035  df-rn 5036  df-res 5037  df-ima 5038  df-pred 5580  df-ord 5626  df-on 5627  df-lim 5628  df-suc 5629  df-iota 5751  df-fun 5789  df-fn 5790  df-f 5791  df-f1 5792  df-fo 5793  df-f1o 5794  df-fv 5795  df-ov 6527  df-om 6932  df-wrecs 7268  df-recs 7329  df-rdg 7367  df-nn 10865
This theorem is referenced by:  nnmulcli  10888  nndivtr  10906  nnmulcld  10912  nn0mulcl  11173  qaddcl  11633  qmulcl  11635  modmulnn  12502  nnexpcl  12687  nnsqcl  12747  expmulnbnd  12810  faccl  12884  facdiv  12888  faclbnd3  12893  faclbnd4lem3  12896  faclbnd5  12899  bcrpcl  12909  trirecip  14377  fprodnncl  14467  nnrisefaccl  14532  lcmgcdlem  15100  lcmgcdnn  15105  pcmptcl  15376  prmreclem1  15401  prmreclem6  15406  4sqlem12  15441  vdwlem3  15468  vdwlem9  15474  vdwlem10  15475  mulgnnass  17342  mulgnnassOLD  17343  ovolunlem1a  22985  ovolunlem1  22986  mbfi1fseqlem3  23204  mbfi1fseqlem4  23205  elqaalem2  23793  elqaalem3  23794  log2cnv  24385  log2tlbnd  24386  log2ublem2  24388  log2ub  24390  basellem1  24521  basellem2  24522  basellem3  24523  basellem4  24524  basellem5  24525  basellem6  24526  basellem7  24527  basellem8  24528  basellem9  24529  efnnfsumcl  24543  efchtdvds  24599  mumullem1  24619  mumullem2  24620  fsumdvdscom  24625  dvdsflf1o  24627  chtublem  24650  pcbcctr  24715  bclbnd  24719  bposlem1  24723  bposlem2  24724  bposlem3  24725  bposlem4  24726  bposlem5  24727  bposlem6  24728  lgseisenlem1  24814  lgseisenlem2  24815  lgseisenlem3  24816  lgseisenlem4  24817  lgsquadlem1  24819  lgsquadlem2  24820  chebbnd1lem1  24872  chebbnd1lem3  24874  dchrisumlem1  24892  mulogsum  24935  pntrsumo1  24968  pntrsumbnd  24969  ostth2lem1  25021  subfaclim  30227  jm2.17a  36345  jm2.17b  36346  jm2.17c  36347  acongrep  36365  acongeq  36368  jm2.27a  36390  jm2.27c  36392
  Copyright terms: Public domain W3C validator