MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsq1p Structured version   Visualization version   GIF version

Theorem dvdsq1p 23824
Description: Divisibility in a polynomial ring is witnessed by the quotient. (Contributed by Stefan O'Rear, 28-Mar-2015.)
Hypotheses
Ref Expression
dvdsq1p.p 𝑃 = (Poly1𝑅)
dvdsq1p.d = (∥r𝑃)
dvdsq1p.b 𝐵 = (Base‘𝑃)
dvdsq1p.c 𝐶 = (Unic1p𝑅)
dvdsq1p.t · = (.r𝑃)
dvdsq1p.q 𝑄 = (quot1p𝑅)
Assertion
Ref Expression
dvdsq1p ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → (𝐺 𝐹𝐹 = ((𝐹𝑄𝐺) · 𝐺)))

Proof of Theorem dvdsq1p
Dummy variable 𝑞 is distinct from all other variables.
StepHypRef Expression
1 dvdsq1p.p . . . . . 6 𝑃 = (Poly1𝑅)
2 dvdsq1p.b . . . . . 6 𝐵 = (Base‘𝑃)
3 dvdsq1p.c . . . . . 6 𝐶 = (Unic1p𝑅)
41, 2, 3uc1pcl 23807 . . . . 5 (𝐺𝐶𝐺𝐵)
543ad2ant3 1082 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → 𝐺𝐵)
6 dvdsq1p.d . . . . 5 = (∥r𝑃)
7 dvdsq1p.t . . . . 5 · = (.r𝑃)
82, 6, 7dvdsr2 18568 . . . 4 (𝐺𝐵 → (𝐺 𝐹 ↔ ∃𝑞𝐵 (𝑞 · 𝐺) = 𝐹))
95, 8syl 17 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → (𝐺 𝐹 ↔ ∃𝑞𝐵 (𝑞 · 𝐺) = 𝐹))
10 eqcom 2628 . . . . 5 ((𝑞 · 𝐺) = 𝐹𝐹 = (𝑞 · 𝐺))
11 simprr 795 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ (𝑞𝐵𝐹 = (𝑞 · 𝐺))) → 𝐹 = (𝑞 · 𝐺))
12 simprl 793 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ (𝑞𝐵𝐹 = (𝑞 · 𝐺))) → 𝑞𝐵)
13 simpl1 1062 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ 𝑞𝐵) → 𝑅 ∈ Ring)
141ply1ring 19537 . . . . . . . . . . . . . . . . 17 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
1513, 14syl 17 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ 𝑞𝐵) → 𝑃 ∈ Ring)
16 ringgrp 18473 . . . . . . . . . . . . . . . 16 (𝑃 ∈ Ring → 𝑃 ∈ Grp)
1715, 16syl 17 . . . . . . . . . . . . . . 15 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ 𝑞𝐵) → 𝑃 ∈ Grp)
18 simpl2 1063 . . . . . . . . . . . . . . 15 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ 𝑞𝐵) → 𝐹𝐵)
19 simpr 477 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ 𝑞𝐵) → 𝑞𝐵)
205adantr 481 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ 𝑞𝐵) → 𝐺𝐵)
212, 7ringcl 18482 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ Ring ∧ 𝑞𝐵𝐺𝐵) → (𝑞 · 𝐺) ∈ 𝐵)
2215, 19, 20, 21syl3anc 1323 . . . . . . . . . . . . . . 15 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ 𝑞𝐵) → (𝑞 · 𝐺) ∈ 𝐵)
23 eqid 2621 . . . . . . . . . . . . . . . 16 (0g𝑃) = (0g𝑃)
24 eqid 2621 . . . . . . . . . . . . . . . 16 (-g𝑃) = (-g𝑃)
252, 23, 24grpsubeq0 17422 . . . . . . . . . . . . . . 15 ((𝑃 ∈ Grp ∧ 𝐹𝐵 ∧ (𝑞 · 𝐺) ∈ 𝐵) → ((𝐹(-g𝑃)(𝑞 · 𝐺)) = (0g𝑃) ↔ 𝐹 = (𝑞 · 𝐺)))
2617, 18, 22, 25syl3anc 1323 . . . . . . . . . . . . . 14 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ 𝑞𝐵) → ((𝐹(-g𝑃)(𝑞 · 𝐺)) = (0g𝑃) ↔ 𝐹 = (𝑞 · 𝐺)))
2726biimprd 238 . . . . . . . . . . . . 13 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ 𝑞𝐵) → (𝐹 = (𝑞 · 𝐺) → (𝐹(-g𝑃)(𝑞 · 𝐺)) = (0g𝑃)))
2827impr 648 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ (𝑞𝐵𝐹 = (𝑞 · 𝐺))) → (𝐹(-g𝑃)(𝑞 · 𝐺)) = (0g𝑃))
2928fveq2d 6152 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ (𝑞𝐵𝐹 = (𝑞 · 𝐺))) → (( deg1𝑅)‘(𝐹(-g𝑃)(𝑞 · 𝐺))) = (( deg1𝑅)‘(0g𝑃)))
30 simpl1 1062 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ (𝑞𝐵𝐹 = (𝑞 · 𝐺))) → 𝑅 ∈ Ring)
31 eqid 2621 . . . . . . . . . . . . 13 ( deg1𝑅) = ( deg1𝑅)
3231, 1, 23deg1z 23751 . . . . . . . . . . . 12 (𝑅 ∈ Ring → (( deg1𝑅)‘(0g𝑃)) = -∞)
3330, 32syl 17 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ (𝑞𝐵𝐹 = (𝑞 · 𝐺))) → (( deg1𝑅)‘(0g𝑃)) = -∞)
3429, 33eqtrd 2655 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ (𝑞𝐵𝐹 = (𝑞 · 𝐺))) → (( deg1𝑅)‘(𝐹(-g𝑃)(𝑞 · 𝐺))) = -∞)
3531, 3uc1pdeg 23811 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ 𝐺𝐶) → (( deg1𝑅)‘𝐺) ∈ ℕ0)
36353adant2 1078 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → (( deg1𝑅)‘𝐺) ∈ ℕ0)
3736nn0red 11296 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → (( deg1𝑅)‘𝐺) ∈ ℝ)
3837adantr 481 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ (𝑞𝐵𝐹 = (𝑞 · 𝐺))) → (( deg1𝑅)‘𝐺) ∈ ℝ)
39 mnflt 11901 . . . . . . . . . . 11 ((( deg1𝑅)‘𝐺) ∈ ℝ → -∞ < (( deg1𝑅)‘𝐺))
4038, 39syl 17 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ (𝑞𝐵𝐹 = (𝑞 · 𝐺))) → -∞ < (( deg1𝑅)‘𝐺))
4134, 40eqbrtrd 4635 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ (𝑞𝐵𝐹 = (𝑞 · 𝐺))) → (( deg1𝑅)‘(𝐹(-g𝑃)(𝑞 · 𝐺))) < (( deg1𝑅)‘𝐺))
42 dvdsq1p.q . . . . . . . . . . 11 𝑄 = (quot1p𝑅)
4342, 1, 2, 31, 24, 7, 3q1peqb 23818 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → ((𝑞𝐵 ∧ (( deg1𝑅)‘(𝐹(-g𝑃)(𝑞 · 𝐺))) < (( deg1𝑅)‘𝐺)) ↔ (𝐹𝑄𝐺) = 𝑞))
4443adantr 481 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ (𝑞𝐵𝐹 = (𝑞 · 𝐺))) → ((𝑞𝐵 ∧ (( deg1𝑅)‘(𝐹(-g𝑃)(𝑞 · 𝐺))) < (( deg1𝑅)‘𝐺)) ↔ (𝐹𝑄𝐺) = 𝑞))
4512, 41, 44mpbi2and 955 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ (𝑞𝐵𝐹 = (𝑞 · 𝐺))) → (𝐹𝑄𝐺) = 𝑞)
4645oveq1d 6619 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ (𝑞𝐵𝐹 = (𝑞 · 𝐺))) → ((𝐹𝑄𝐺) · 𝐺) = (𝑞 · 𝐺))
4711, 46eqtr4d 2658 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ (𝑞𝐵𝐹 = (𝑞 · 𝐺))) → 𝐹 = ((𝐹𝑄𝐺) · 𝐺))
4847expr 642 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ 𝑞𝐵) → (𝐹 = (𝑞 · 𝐺) → 𝐹 = ((𝐹𝑄𝐺) · 𝐺)))
4910, 48syl5bi 232 . . . 4 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ 𝑞𝐵) → ((𝑞 · 𝐺) = 𝐹𝐹 = ((𝐹𝑄𝐺) · 𝐺)))
5049rexlimdva 3024 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → (∃𝑞𝐵 (𝑞 · 𝐺) = 𝐹𝐹 = ((𝐹𝑄𝐺) · 𝐺)))
519, 50sylbid 230 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → (𝐺 𝐹𝐹 = ((𝐹𝑄𝐺) · 𝐺)))
5242, 1, 2, 3q1pcl 23819 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → (𝐹𝑄𝐺) ∈ 𝐵)
532, 6, 7dvdsrmul 18569 . . . 4 ((𝐺𝐵 ∧ (𝐹𝑄𝐺) ∈ 𝐵) → 𝐺 ((𝐹𝑄𝐺) · 𝐺))
545, 52, 53syl2anc 692 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → 𝐺 ((𝐹𝑄𝐺) · 𝐺))
55 breq2 4617 . . 3 (𝐹 = ((𝐹𝑄𝐺) · 𝐺) → (𝐺 𝐹𝐺 ((𝐹𝑄𝐺) · 𝐺)))
5654, 55syl5ibrcom 237 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → (𝐹 = ((𝐹𝑄𝐺) · 𝐺) → 𝐺 𝐹))
5751, 56impbid 202 1 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → (𝐺 𝐹𝐹 = ((𝐹𝑄𝐺) · 𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987  wrex 2908   class class class wbr 4613  cfv 5847  (class class class)co 6604  cr 9879  -∞cmnf 10016   < clt 10018  0cn0 11236  Basecbs 15781  .rcmulr 15863  0gc0g 16021  Grpcgrp 17343  -gcsg 17345  Ringcrg 18468  rcdsr 18559  Poly1cpl1 19466   deg1 cdg1 23718  Unic1pcuc1p 23790  quot1pcq1p 23791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958  ax-addf 9959  ax-mulf 9960
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-iin 4488  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-of 6850  df-ofr 6851  df-om 7013  df-1st 7113  df-2nd 7114  df-supp 7241  df-tpos 7297  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-2o 7506  df-oadd 7509  df-er 7687  df-map 7804  df-pm 7805  df-ixp 7853  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-fsupp 8220  df-sup 8292  df-oi 8359  df-card 8709  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-5 11026  df-6 11027  df-7 11028  df-8 11029  df-9 11030  df-n0 11237  df-z 11322  df-dec 11438  df-uz 11632  df-fz 12269  df-fzo 12407  df-seq 12742  df-hash 13058  df-struct 15783  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-ress 15788  df-plusg 15875  df-mulr 15876  df-starv 15877  df-sca 15878  df-vsca 15879  df-tset 15881  df-ple 15882  df-ds 15885  df-unif 15886  df-0g 16023  df-gsum 16024  df-mre 16167  df-mrc 16168  df-acs 16170  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-mhm 17256  df-submnd 17257  df-grp 17346  df-minusg 17347  df-sbg 17348  df-mulg 17462  df-subg 17512  df-ghm 17579  df-cntz 17671  df-cmn 18116  df-abl 18117  df-mgp 18411  df-ur 18423  df-ring 18470  df-cring 18471  df-oppr 18544  df-dvdsr 18562  df-unit 18563  df-invr 18593  df-subrg 18699  df-lmod 18786  df-lss 18852  df-rlreg 19202  df-psr 19275  df-mvr 19276  df-mpl 19277  df-opsr 19279  df-psr1 19469  df-vr1 19470  df-ply1 19471  df-coe1 19472  df-cnfld 19666  df-mdeg 23719  df-deg1 23720  df-uc1p 23795  df-q1p 23796
This theorem is referenced by:  dvdsr1p  23825  fta1glem1  23829  fta1glem2  23830
  Copyright terms: Public domain W3C validator