MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fta1glem1 Structured version   Visualization version   GIF version

Theorem fta1glem1 24759
Description: Lemma for fta1g 24761. (Contributed by Mario Carneiro, 7-Jun-2016.)
Hypotheses
Ref Expression
fta1g.p 𝑃 = (Poly1𝑅)
fta1g.b 𝐵 = (Base‘𝑃)
fta1g.d 𝐷 = ( deg1𝑅)
fta1g.o 𝑂 = (eval1𝑅)
fta1g.w 𝑊 = (0g𝑅)
fta1g.z 0 = (0g𝑃)
fta1g.1 (𝜑𝑅 ∈ IDomn)
fta1g.2 (𝜑𝐹𝐵)
fta1glem.k 𝐾 = (Base‘𝑅)
fta1glem.x 𝑋 = (var1𝑅)
fta1glem.m = (-g𝑃)
fta1glem.a 𝐴 = (algSc‘𝑃)
fta1glem.g 𝐺 = (𝑋 (𝐴𝑇))
fta1glem.3 (𝜑𝑁 ∈ ℕ0)
fta1glem.4 (𝜑 → (𝐷𝐹) = (𝑁 + 1))
fta1glem.5 (𝜑𝑇 ∈ ((𝑂𝐹) “ {𝑊}))
Assertion
Ref Expression
fta1glem1 (𝜑 → (𝐷‘(𝐹(quot1p𝑅)𝐺)) = 𝑁)

Proof of Theorem fta1glem1
StepHypRef Expression
1 1cnd 10636 . 2 (𝜑 → 1 ∈ ℂ)
2 fta1g.1 . . . . . 6 (𝜑𝑅 ∈ IDomn)
3 isidom 20077 . . . . . . 7 (𝑅 ∈ IDomn ↔ (𝑅 ∈ CRing ∧ 𝑅 ∈ Domn))
4 domnnzr 20068 . . . . . . 7 (𝑅 ∈ Domn → 𝑅 ∈ NzRing)
53, 4simplbiim 507 . . . . . 6 (𝑅 ∈ IDomn → 𝑅 ∈ NzRing)
62, 5syl 17 . . . . 5 (𝜑𝑅 ∈ NzRing)
7 nzrring 20034 . . . . 5 (𝑅 ∈ NzRing → 𝑅 ∈ Ring)
86, 7syl 17 . . . 4 (𝜑𝑅 ∈ Ring)
9 fta1g.2 . . . . 5 (𝜑𝐹𝐵)
10 fta1g.p . . . . . . . 8 𝑃 = (Poly1𝑅)
11 fta1g.b . . . . . . . 8 𝐵 = (Base‘𝑃)
12 fta1glem.k . . . . . . . 8 𝐾 = (Base‘𝑅)
13 fta1glem.x . . . . . . . 8 𝑋 = (var1𝑅)
14 fta1glem.m . . . . . . . 8 = (-g𝑃)
15 fta1glem.a . . . . . . . 8 𝐴 = (algSc‘𝑃)
16 fta1glem.g . . . . . . . 8 𝐺 = (𝑋 (𝐴𝑇))
17 fta1g.o . . . . . . . 8 𝑂 = (eval1𝑅)
183simplbi 500 . . . . . . . . 9 (𝑅 ∈ IDomn → 𝑅 ∈ CRing)
192, 18syl 17 . . . . . . . 8 (𝜑𝑅 ∈ CRing)
20 fta1glem.5 . . . . . . . . . 10 (𝜑𝑇 ∈ ((𝑂𝐹) “ {𝑊}))
21 eqid 2821 . . . . . . . . . . . . 13 (𝑅s 𝐾) = (𝑅s 𝐾)
22 eqid 2821 . . . . . . . . . . . . 13 (Base‘(𝑅s 𝐾)) = (Base‘(𝑅s 𝐾))
2312fvexi 6684 . . . . . . . . . . . . . 14 𝐾 ∈ V
2423a1i 11 . . . . . . . . . . . . 13 (𝜑𝐾 ∈ V)
2517, 10, 21, 12evl1rhm 20495 . . . . . . . . . . . . . . . 16 (𝑅 ∈ CRing → 𝑂 ∈ (𝑃 RingHom (𝑅s 𝐾)))
2619, 25syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑂 ∈ (𝑃 RingHom (𝑅s 𝐾)))
2711, 22rhmf 19478 . . . . . . . . . . . . . . 15 (𝑂 ∈ (𝑃 RingHom (𝑅s 𝐾)) → 𝑂:𝐵⟶(Base‘(𝑅s 𝐾)))
2826, 27syl 17 . . . . . . . . . . . . . 14 (𝜑𝑂:𝐵⟶(Base‘(𝑅s 𝐾)))
2928, 9ffvelrnd 6852 . . . . . . . . . . . . 13 (𝜑 → (𝑂𝐹) ∈ (Base‘(𝑅s 𝐾)))
3021, 12, 22, 2, 24, 29pwselbas 16762 . . . . . . . . . . . 12 (𝜑 → (𝑂𝐹):𝐾𝐾)
3130ffnd 6515 . . . . . . . . . . 11 (𝜑 → (𝑂𝐹) Fn 𝐾)
32 fniniseg 6830 . . . . . . . . . . 11 ((𝑂𝐹) Fn 𝐾 → (𝑇 ∈ ((𝑂𝐹) “ {𝑊}) ↔ (𝑇𝐾 ∧ ((𝑂𝐹)‘𝑇) = 𝑊)))
3331, 32syl 17 . . . . . . . . . 10 (𝜑 → (𝑇 ∈ ((𝑂𝐹) “ {𝑊}) ↔ (𝑇𝐾 ∧ ((𝑂𝐹)‘𝑇) = 𝑊)))
3420, 33mpbid 234 . . . . . . . . 9 (𝜑 → (𝑇𝐾 ∧ ((𝑂𝐹)‘𝑇) = 𝑊))
3534simpld 497 . . . . . . . 8 (𝜑𝑇𝐾)
36 eqid 2821 . . . . . . . 8 (Monic1p𝑅) = (Monic1p𝑅)
37 fta1g.d . . . . . . . 8 𝐷 = ( deg1𝑅)
38 fta1g.w . . . . . . . 8 𝑊 = (0g𝑅)
3910, 11, 12, 13, 14, 15, 16, 17, 6, 19, 35, 36, 37, 38ply1remlem 24756 . . . . . . 7 (𝜑 → (𝐺 ∈ (Monic1p𝑅) ∧ (𝐷𝐺) = 1 ∧ ((𝑂𝐺) “ {𝑊}) = {𝑇}))
4039simp1d 1138 . . . . . 6 (𝜑𝐺 ∈ (Monic1p𝑅))
41 eqid 2821 . . . . . . 7 (Unic1p𝑅) = (Unic1p𝑅)
4241, 36mon1puc1p 24744 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐺 ∈ (Monic1p𝑅)) → 𝐺 ∈ (Unic1p𝑅))
438, 40, 42syl2anc 586 . . . . 5 (𝜑𝐺 ∈ (Unic1p𝑅))
44 eqid 2821 . . . . . 6 (quot1p𝑅) = (quot1p𝑅)
4544, 10, 11, 41q1pcl 24749 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺 ∈ (Unic1p𝑅)) → (𝐹(quot1p𝑅)𝐺) ∈ 𝐵)
468, 9, 43, 45syl3anc 1367 . . . 4 (𝜑 → (𝐹(quot1p𝑅)𝐺) ∈ 𝐵)
47 fta1glem.4 . . . . . . . 8 (𝜑 → (𝐷𝐹) = (𝑁 + 1))
48 fta1glem.3 . . . . . . . . 9 (𝜑𝑁 ∈ ℕ0)
49 peano2nn0 11938 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
5048, 49syl 17 . . . . . . . 8 (𝜑 → (𝑁 + 1) ∈ ℕ0)
5147, 50eqeltrd 2913 . . . . . . 7 (𝜑 → (𝐷𝐹) ∈ ℕ0)
52 fta1g.z . . . . . . . . 9 0 = (0g𝑃)
5337, 10, 52, 11deg1nn0clb 24684 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐹𝐵) → (𝐹0 ↔ (𝐷𝐹) ∈ ℕ0))
548, 9, 53syl2anc 586 . . . . . . 7 (𝜑 → (𝐹0 ↔ (𝐷𝐹) ∈ ℕ0))
5551, 54mpbird 259 . . . . . 6 (𝜑𝐹0 )
5634simprd 498 . . . . . . . . 9 (𝜑 → ((𝑂𝐹)‘𝑇) = 𝑊)
57 eqid 2821 . . . . . . . . . 10 (∥r𝑃) = (∥r𝑃)
5810, 11, 12, 13, 14, 15, 16, 17, 6, 19, 35, 9, 38, 57facth1 24758 . . . . . . . . 9 (𝜑 → (𝐺(∥r𝑃)𝐹 ↔ ((𝑂𝐹)‘𝑇) = 𝑊))
5956, 58mpbird 259 . . . . . . . 8 (𝜑𝐺(∥r𝑃)𝐹)
60 eqid 2821 . . . . . . . . . 10 (.r𝑃) = (.r𝑃)
6110, 57, 11, 41, 60, 44dvdsq1p 24754 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺 ∈ (Unic1p𝑅)) → (𝐺(∥r𝑃)𝐹𝐹 = ((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺)))
628, 9, 43, 61syl3anc 1367 . . . . . . . 8 (𝜑 → (𝐺(∥r𝑃)𝐹𝐹 = ((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺)))
6359, 62mpbid 234 . . . . . . 7 (𝜑𝐹 = ((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺))
6463eqcomd 2827 . . . . . 6 (𝜑 → ((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺) = 𝐹)
6510ply1crng 20366 . . . . . . . . 9 (𝑅 ∈ CRing → 𝑃 ∈ CRing)
6619, 65syl 17 . . . . . . . 8 (𝜑𝑃 ∈ CRing)
67 crngring 19308 . . . . . . . 8 (𝑃 ∈ CRing → 𝑃 ∈ Ring)
6866, 67syl 17 . . . . . . 7 (𝜑𝑃 ∈ Ring)
6910, 11, 36mon1pcl 24738 . . . . . . . 8 (𝐺 ∈ (Monic1p𝑅) → 𝐺𝐵)
7040, 69syl 17 . . . . . . 7 (𝜑𝐺𝐵)
7111, 60, 52ringlz 19337 . . . . . . 7 ((𝑃 ∈ Ring ∧ 𝐺𝐵) → ( 0 (.r𝑃)𝐺) = 0 )
7268, 70, 71syl2anc 586 . . . . . 6 (𝜑 → ( 0 (.r𝑃)𝐺) = 0 )
7355, 64, 723netr4d 3093 . . . . 5 (𝜑 → ((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺) ≠ ( 0 (.r𝑃)𝐺))
74 oveq1 7163 . . . . . 6 ((𝐹(quot1p𝑅)𝐺) = 0 → ((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺) = ( 0 (.r𝑃)𝐺))
7574necon3i 3048 . . . . 5 (((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺) ≠ ( 0 (.r𝑃)𝐺) → (𝐹(quot1p𝑅)𝐺) ≠ 0 )
7673, 75syl 17 . . . 4 (𝜑 → (𝐹(quot1p𝑅)𝐺) ≠ 0 )
7737, 10, 52, 11deg1nn0cl 24682 . . . 4 ((𝑅 ∈ Ring ∧ (𝐹(quot1p𝑅)𝐺) ∈ 𝐵 ∧ (𝐹(quot1p𝑅)𝐺) ≠ 0 ) → (𝐷‘(𝐹(quot1p𝑅)𝐺)) ∈ ℕ0)
788, 46, 76, 77syl3anc 1367 . . 3 (𝜑 → (𝐷‘(𝐹(quot1p𝑅)𝐺)) ∈ ℕ0)
7978nn0cnd 11958 . 2 (𝜑 → (𝐷‘(𝐹(quot1p𝑅)𝐺)) ∈ ℂ)
8048nn0cnd 11958 . 2 (𝜑𝑁 ∈ ℂ)
8111, 60crngcom 19312 . . . . . . 7 ((𝑃 ∈ CRing ∧ (𝐹(quot1p𝑅)𝐺) ∈ 𝐵𝐺𝐵) → ((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺) = (𝐺(.r𝑃)(𝐹(quot1p𝑅)𝐺)))
8266, 46, 70, 81syl3anc 1367 . . . . . 6 (𝜑 → ((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺) = (𝐺(.r𝑃)(𝐹(quot1p𝑅)𝐺)))
8363, 82eqtrd 2856 . . . . 5 (𝜑𝐹 = (𝐺(.r𝑃)(𝐹(quot1p𝑅)𝐺)))
8483fveq2d 6674 . . . 4 (𝜑 → (𝐷𝐹) = (𝐷‘(𝐺(.r𝑃)(𝐹(quot1p𝑅)𝐺))))
85 eqid 2821 . . . . 5 (RLReg‘𝑅) = (RLReg‘𝑅)
8639simp2d 1139 . . . . . . 7 (𝜑 → (𝐷𝐺) = 1)
87 1nn0 11914 . . . . . . 7 1 ∈ ℕ0
8886, 87eqeltrdi 2921 . . . . . 6 (𝜑 → (𝐷𝐺) ∈ ℕ0)
8937, 10, 52, 11deg1nn0clb 24684 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐺𝐵) → (𝐺0 ↔ (𝐷𝐺) ∈ ℕ0))
908, 70, 89syl2anc 586 . . . . . 6 (𝜑 → (𝐺0 ↔ (𝐷𝐺) ∈ ℕ0))
9188, 90mpbird 259 . . . . 5 (𝜑𝐺0 )
92 eqid 2821 . . . . . . . 8 (Unit‘𝑅) = (Unit‘𝑅)
9385, 92unitrrg 20066 . . . . . . 7 (𝑅 ∈ Ring → (Unit‘𝑅) ⊆ (RLReg‘𝑅))
948, 93syl 17 . . . . . 6 (𝜑 → (Unit‘𝑅) ⊆ (RLReg‘𝑅))
9537, 92, 41uc1pldg 24742 . . . . . . 7 (𝐺 ∈ (Unic1p𝑅) → ((coe1𝐺)‘(𝐷𝐺)) ∈ (Unit‘𝑅))
9643, 95syl 17 . . . . . 6 (𝜑 → ((coe1𝐺)‘(𝐷𝐺)) ∈ (Unit‘𝑅))
9794, 96sseldd 3968 . . . . 5 (𝜑 → ((coe1𝐺)‘(𝐷𝐺)) ∈ (RLReg‘𝑅))
9837, 10, 85, 11, 60, 52, 8, 70, 91, 97, 46, 76deg1mul2 24708 . . . 4 (𝜑 → (𝐷‘(𝐺(.r𝑃)(𝐹(quot1p𝑅)𝐺))) = ((𝐷𝐺) + (𝐷‘(𝐹(quot1p𝑅)𝐺))))
9984, 47, 983eqtr3d 2864 . . 3 (𝜑 → (𝑁 + 1) = ((𝐷𝐺) + (𝐷‘(𝐹(quot1p𝑅)𝐺))))
100 ax-1cn 10595 . . . 4 1 ∈ ℂ
101 addcom 10826 . . . 4 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑁 + 1) = (1 + 𝑁))
10280, 100, 101sylancl 588 . . 3 (𝜑 → (𝑁 + 1) = (1 + 𝑁))
10386oveq1d 7171 . . 3 (𝜑 → ((𝐷𝐺) + (𝐷‘(𝐹(quot1p𝑅)𝐺))) = (1 + (𝐷‘(𝐹(quot1p𝑅)𝐺))))
10499, 102, 1033eqtr3rd 2865 . 2 (𝜑 → (1 + (𝐷‘(𝐹(quot1p𝑅)𝐺))) = (1 + 𝑁))
1051, 79, 80, 104addcanad 10845 1 (𝜑 → (𝐷‘(𝐹(quot1p𝑅)𝐺)) = 𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wne 3016  Vcvv 3494  wss 3936  {csn 4567   class class class wbr 5066  ccnv 5554  cima 5558   Fn wfn 6350  wf 6351  cfv 6355  (class class class)co 7156  cc 10535  1c1 10538   + caddc 10540  0cn0 11898  Basecbs 16483  .rcmulr 16566  0gc0g 16713  s cpws 16720  -gcsg 18105  Ringcrg 19297  CRingccrg 19298  rcdsr 19388  Unitcui 19389   RingHom crh 19464  NzRingcnzr 20030  RLRegcrlreg 20052  Domncdomn 20053  IDomncidom 20054  algSccascl 20084  var1cv1 20344  Poly1cpl1 20345  coe1cco1 20346  eval1ce1 20477   deg1 cdg1 24648  Monic1pcmn1 24719  Unic1pcuc1p 24720  quot1pcq1p 24721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615  ax-addf 10616  ax-mulf 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-ofr 7410  df-om 7581  df-1st 7689  df-2nd 7690  df-supp 7831  df-tpos 7892  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-er 8289  df-map 8408  df-pm 8409  df-ixp 8462  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fsupp 8834  df-sup 8906  df-oi 8974  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-dec 12100  df-uz 12245  df-fz 12894  df-fzo 13035  df-seq 13371  df-hash 13692  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-starv 16580  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-unif 16588  df-hom 16589  df-cco 16590  df-0g 16715  df-gsum 16716  df-prds 16721  df-pws 16723  df-mre 16857  df-mrc 16858  df-acs 16860  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-mhm 17956  df-submnd 17957  df-grp 18106  df-minusg 18107  df-sbg 18108  df-mulg 18225  df-subg 18276  df-ghm 18356  df-cntz 18447  df-cmn 18908  df-abl 18909  df-mgp 19240  df-ur 19252  df-srg 19256  df-ring 19299  df-cring 19300  df-oppr 19373  df-dvdsr 19391  df-unit 19392  df-invr 19422  df-rnghom 19467  df-subrg 19533  df-lmod 19636  df-lss 19704  df-lsp 19744  df-nzr 20031  df-rlreg 20056  df-domn 20057  df-idom 20058  df-assa 20085  df-asp 20086  df-ascl 20087  df-psr 20136  df-mvr 20137  df-mpl 20138  df-opsr 20140  df-evls 20286  df-evl 20287  df-psr1 20348  df-vr1 20349  df-ply1 20350  df-coe1 20351  df-evl1 20479  df-cnfld 20546  df-mdeg 24649  df-deg1 24650  df-mon1 24724  df-uc1p 24725  df-q1p 24726  df-r1p 24727
This theorem is referenced by:  fta1glem2  24760
  Copyright terms: Public domain W3C validator