Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  flsqrt Structured version   Visualization version   GIF version

Theorem flsqrt 43841
Description: A condition equivalent to the floor of a square root. (Contributed by AV, 17-Aug-2021.)
Assertion
Ref Expression
flsqrt (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℕ0) → ((⌊‘(√‘𝐴)) = 𝐵 ↔ ((𝐵↑2) ≤ 𝐴𝐴 < ((𝐵 + 1)↑2))))

Proof of Theorem flsqrt
StepHypRef Expression
1 resqrtcl 14598 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (√‘𝐴) ∈ ℝ)
2 nn0z 11992 . . 3 (𝐵 ∈ ℕ0𝐵 ∈ ℤ)
3 flbi 13176 . . 3 (((√‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℤ) → ((⌊‘(√‘𝐴)) = 𝐵 ↔ (𝐵 ≤ (√‘𝐴) ∧ (√‘𝐴) < (𝐵 + 1))))
41, 2, 3syl2an 597 . 2 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℕ0) → ((⌊‘(√‘𝐴)) = 𝐵 ↔ (𝐵 ≤ (√‘𝐴) ∧ (√‘𝐴) < (𝐵 + 1))))
5 nn0re 11893 . . . . . . . 8 (𝐵 ∈ ℕ0𝐵 ∈ ℝ)
6 nn0ge0 11909 . . . . . . . 8 (𝐵 ∈ ℕ0 → 0 ≤ 𝐵)
75, 6jca 514 . . . . . . 7 (𝐵 ∈ ℕ0 → (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵))
8 sqrtsq 14614 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) → (√‘(𝐵↑2)) = 𝐵)
98eqcomd 2827 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) → 𝐵 = (√‘(𝐵↑2)))
107, 9syl 17 . . . . . 6 (𝐵 ∈ ℕ0𝐵 = (√‘(𝐵↑2)))
1110breq1d 5062 . . . . 5 (𝐵 ∈ ℕ0 → (𝐵 ≤ (√‘𝐴) ↔ (√‘(𝐵↑2)) ≤ (√‘𝐴)))
1211adantl 484 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℕ0) → (𝐵 ≤ (√‘𝐴) ↔ (√‘(𝐵↑2)) ≤ (√‘𝐴)))
13 nn0sqcl 13446 . . . . . . . . 9 (𝐵 ∈ ℕ0 → (𝐵↑2) ∈ ℕ0)
1413nn0red 11943 . . . . . . . 8 (𝐵 ∈ ℕ0 → (𝐵↑2) ∈ ℝ)
155sqge0d 13602 . . . . . . . 8 (𝐵 ∈ ℕ0 → 0 ≤ (𝐵↑2))
1614, 15jca 514 . . . . . . 7 (𝐵 ∈ ℕ0 → ((𝐵↑2) ∈ ℝ ∧ 0 ≤ (𝐵↑2)))
1716anim2i 618 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℕ0) → ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ ((𝐵↑2) ∈ ℝ ∧ 0 ≤ (𝐵↑2))))
1817ancomd 464 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℕ0) → (((𝐵↑2) ∈ ℝ ∧ 0 ≤ (𝐵↑2)) ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)))
19 sqrtle 14605 . . . . 5 ((((𝐵↑2) ∈ ℝ ∧ 0 ≤ (𝐵↑2)) ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) → ((𝐵↑2) ≤ 𝐴 ↔ (√‘(𝐵↑2)) ≤ (√‘𝐴)))
2018, 19syl 17 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℕ0) → ((𝐵↑2) ≤ 𝐴 ↔ (√‘(𝐵↑2)) ≤ (√‘𝐴)))
2112, 20bitr4d 284 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℕ0) → (𝐵 ≤ (√‘𝐴) ↔ (𝐵↑2) ≤ 𝐴))
22 peano2nn0 11924 . . . . . . . . 9 (𝐵 ∈ ℕ0 → (𝐵 + 1) ∈ ℕ0)
2322nn0red 11943 . . . . . . . 8 (𝐵 ∈ ℕ0 → (𝐵 + 1) ∈ ℝ)
24 1red 10628 . . . . . . . . 9 (𝐵 ∈ ℕ0 → 1 ∈ ℝ)
25 0le1 11149 . . . . . . . . . 10 0 ≤ 1
2625a1i 11 . . . . . . . . 9 (𝐵 ∈ ℕ0 → 0 ≤ 1)
275, 24, 6, 26addge0d 11202 . . . . . . . 8 (𝐵 ∈ ℕ0 → 0 ≤ (𝐵 + 1))
2823, 27sqrtsqd 14764 . . . . . . 7 (𝐵 ∈ ℕ0 → (√‘((𝐵 + 1)↑2)) = (𝐵 + 1))
2928eqcomd 2827 . . . . . 6 (𝐵 ∈ ℕ0 → (𝐵 + 1) = (√‘((𝐵 + 1)↑2)))
3029breq2d 5064 . . . . 5 (𝐵 ∈ ℕ0 → ((√‘𝐴) < (𝐵 + 1) ↔ (√‘𝐴) < (√‘((𝐵 + 1)↑2))))
3130adantl 484 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℕ0) → ((√‘𝐴) < (𝐵 + 1) ↔ (√‘𝐴) < (√‘((𝐵 + 1)↑2))))
32 2nn0 11901 . . . . . . . . 9 2 ∈ ℕ0
3332a1i 11 . . . . . . . 8 (𝐵 ∈ ℕ0 → 2 ∈ ℕ0)
3422, 33nn0expcld 13597 . . . . . . 7 (𝐵 ∈ ℕ0 → ((𝐵 + 1)↑2) ∈ ℕ0)
3534nn0red 11943 . . . . . 6 (𝐵 ∈ ℕ0 → ((𝐵 + 1)↑2) ∈ ℝ)
3623sqge0d 13602 . . . . . 6 (𝐵 ∈ ℕ0 → 0 ≤ ((𝐵 + 1)↑2))
3735, 36jca 514 . . . . 5 (𝐵 ∈ ℕ0 → (((𝐵 + 1)↑2) ∈ ℝ ∧ 0 ≤ ((𝐵 + 1)↑2)))
38 sqrtlt 14606 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (((𝐵 + 1)↑2) ∈ ℝ ∧ 0 ≤ ((𝐵 + 1)↑2))) → (𝐴 < ((𝐵 + 1)↑2) ↔ (√‘𝐴) < (√‘((𝐵 + 1)↑2))))
3937, 38sylan2 594 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℕ0) → (𝐴 < ((𝐵 + 1)↑2) ↔ (√‘𝐴) < (√‘((𝐵 + 1)↑2))))
4031, 39bitr4d 284 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℕ0) → ((√‘𝐴) < (𝐵 + 1) ↔ 𝐴 < ((𝐵 + 1)↑2)))
4121, 40anbi12d 632 . 2 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℕ0) → ((𝐵 ≤ (√‘𝐴) ∧ (√‘𝐴) < (𝐵 + 1)) ↔ ((𝐵↑2) ≤ 𝐴𝐴 < ((𝐵 + 1)↑2))))
424, 41bitrd 281 1 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℕ0) → ((⌊‘(√‘𝐴)) = 𝐵 ↔ ((𝐵↑2) ≤ 𝐴𝐴 < ((𝐵 + 1)↑2))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114   class class class wbr 5052  cfv 6341  (class class class)co 7142  cr 10522  0cc0 10523  1c1 10524   + caddc 10526   < clt 10661  cle 10662  2c2 11679  0cn0 11884  cz 11968  cfl 13150  cexp 13419  csqrt 14577
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5189  ax-nul 5196  ax-pow 5252  ax-pr 5316  ax-un 7447  ax-cnex 10579  ax-resscn 10580  ax-1cn 10581  ax-icn 10582  ax-addcl 10583  ax-addrcl 10584  ax-mulcl 10585  ax-mulrcl 10586  ax-mulcom 10587  ax-addass 10588  ax-mulass 10589  ax-distr 10590  ax-i2m1 10591  ax-1ne0 10592  ax-1rid 10593  ax-rnegex 10594  ax-rrecex 10595  ax-cnre 10596  ax-pre-lttri 10597  ax-pre-lttrn 10598  ax-pre-ltadd 10599  ax-pre-mulgt0 10600  ax-pre-sup 10601
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3488  df-sbc 3764  df-csb 3872  df-dif 3927  df-un 3929  df-in 3931  df-ss 3940  df-pss 3942  df-nul 4280  df-if 4454  df-pw 4527  df-sn 4554  df-pr 4556  df-tp 4558  df-op 4560  df-uni 4825  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5446  df-eprel 5451  df-po 5460  df-so 5461  df-fr 5500  df-we 5502  df-xp 5547  df-rel 5548  df-cnv 5549  df-co 5550  df-dm 5551  df-rn 5552  df-res 5553  df-ima 5554  df-pred 6134  df-ord 6180  df-on 6181  df-lim 6182  df-suc 6183  df-iota 6300  df-fun 6343  df-fn 6344  df-f 6345  df-f1 6346  df-fo 6347  df-f1o 6348  df-fv 6349  df-riota 7100  df-ov 7145  df-oprab 7146  df-mpo 7147  df-om 7567  df-2nd 7676  df-wrecs 7933  df-recs 7994  df-rdg 8032  df-er 8275  df-en 8496  df-dom 8497  df-sdom 8498  df-sup 8892  df-inf 8893  df-pnf 10663  df-mnf 10664  df-xr 10665  df-ltxr 10666  df-le 10667  df-sub 10858  df-neg 10859  df-div 11284  df-nn 11625  df-2 11687  df-3 11688  df-n0 11885  df-z 11969  df-uz 12231  df-rp 12377  df-fl 13152  df-seq 13360  df-exp 13420  df-cj 14443  df-re 14444  df-im 14445  df-sqrt 14579
This theorem is referenced by:  flsqrt5  43842
  Copyright terms: Public domain W3C validator