Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierd Structured version   Visualization version   GIF version

Theorem fourierd 42597
Description: Fourier series convergence for periodic, piecewise smooth functions. The series converges to the average value of the left and the right limit of the function. Thus, if the function is continuous at a given point, the series converges exactly to the function value, see fouriercnp 42601. Notice that for a piecewise smooth function, the left and right limits always exist, see fourier2 42602 for an alternative form of the theorem that makes this fact explicit. When the first derivative is continuous, a simpler version of the theorem can be stated, see fouriercn 42607. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierd.f (𝜑𝐹:ℝ⟶ℝ)
fourierd.t 𝑇 = (2 · π)
fourierd.per ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
fourierd.g 𝐺 = ((ℝ D 𝐹) ↾ (-π(,)π))
fourierd.dmdv (𝜑 → ((-π(,)π) ∖ dom 𝐺) ∈ Fin)
fourierd.dvcn (𝜑𝐺 ∈ (dom 𝐺cn→ℂ))
fourierd.rlim ((𝜑𝑥 ∈ ((-π[,)π) ∖ dom 𝐺)) → ((𝐺 ↾ (𝑥(,)+∞)) lim 𝑥) ≠ ∅)
fourierd.llim ((𝜑𝑥 ∈ ((-π(,]π) ∖ dom 𝐺)) → ((𝐺 ↾ (-∞(,)𝑥)) lim 𝑥) ≠ ∅)
fourierd.x (𝜑𝑋 ∈ ℝ)
fourierd.l (𝜑𝐿 ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋))
fourierd.r (𝜑𝑅 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋))
fourierd.a 𝐴 = (𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π))
fourierd.b 𝐵 = (𝑛 ∈ ℕ ↦ (∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π))
Assertion
Ref Expression
fourierd (𝜑 → (((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) = ((𝐿 + 𝑅) / 2))
Distinct variable groups:   𝑛,𝐹,𝑥   𝑥,𝐺   𝑥,𝑇   𝑛,𝑋,𝑥   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑛)   𝐴(𝑥,𝑛)   𝐵(𝑥,𝑛)   𝑅(𝑥,𝑛)   𝑇(𝑛)   𝐺(𝑛)   𝐿(𝑥,𝑛)

Proof of Theorem fourierd
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 fourierd.f . . 3 (𝜑𝐹:ℝ⟶ℝ)
2 fourierd.t . . 3 𝑇 = (2 · π)
3 fourierd.per . . 3 ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
4 fourierd.g . . 3 𝐺 = ((ℝ D 𝐹) ↾ (-π(,)π))
5 fourierd.dmdv . . 3 (𝜑 → ((-π(,)π) ∖ dom 𝐺) ∈ Fin)
6 fourierd.dvcn . . 3 (𝜑𝐺 ∈ (dom 𝐺cn→ℂ))
7 fourierd.rlim . . 3 ((𝜑𝑥 ∈ ((-π[,)π) ∖ dom 𝐺)) → ((𝐺 ↾ (𝑥(,)+∞)) lim 𝑥) ≠ ∅)
8 fourierd.llim . . 3 ((𝜑𝑥 ∈ ((-π(,]π) ∖ dom 𝐺)) → ((𝐺 ↾ (-∞(,)𝑥)) lim 𝑥) ≠ ∅)
9 fourierd.x . . 3 (𝜑𝑋 ∈ ℝ)
10 fourierd.l . . 3 (𝜑𝐿 ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋))
11 fourierd.r . . 3 (𝜑𝑅 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋))
12 fourierd.a . . 3 𝐴 = (𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π))
13 fourierd.b . . 3 𝐵 = (𝑛 ∈ ℕ ↦ (∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π))
14 nfcv 2977 . . . 4 𝑘(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))
15 nfmpt1 5150 . . . . . . . 8 𝑛(𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π))
1612, 15nfcxfr 2975 . . . . . . 7 𝑛𝐴
17 nfcv 2977 . . . . . . 7 𝑛𝑘
1816, 17nffv 6666 . . . . . 6 𝑛(𝐴𝑘)
19 nfcv 2977 . . . . . 6 𝑛 ·
20 nfcv 2977 . . . . . 6 𝑛(cos‘(𝑘 · 𝑋))
2118, 19, 20nfov 7172 . . . . 5 𝑛((𝐴𝑘) · (cos‘(𝑘 · 𝑋)))
22 nfcv 2977 . . . . 5 𝑛 +
23 nfmpt1 5150 . . . . . . . 8 𝑛(𝑛 ∈ ℕ ↦ (∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π))
2413, 23nfcxfr 2975 . . . . . . 7 𝑛𝐵
2524, 17nffv 6666 . . . . . 6 𝑛(𝐵𝑘)
26 nfcv 2977 . . . . . 6 𝑛(sin‘(𝑘 · 𝑋))
2725, 19, 26nfov 7172 . . . . 5 𝑛((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))
2821, 22, 27nfov 7172 . . . 4 𝑛(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋))))
29 fveq2 6656 . . . . . 6 (𝑛 = 𝑘 → (𝐴𝑛) = (𝐴𝑘))
30 oveq1 7149 . . . . . . 7 (𝑛 = 𝑘 → (𝑛 · 𝑋) = (𝑘 · 𝑋))
3130fveq2d 6660 . . . . . 6 (𝑛 = 𝑘 → (cos‘(𝑛 · 𝑋)) = (cos‘(𝑘 · 𝑋)))
3229, 31oveq12d 7160 . . . . 5 (𝑛 = 𝑘 → ((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) = ((𝐴𝑘) · (cos‘(𝑘 · 𝑋))))
33 fveq2 6656 . . . . . 6 (𝑛 = 𝑘 → (𝐵𝑛) = (𝐵𝑘))
3430fveq2d 6660 . . . . . 6 (𝑛 = 𝑘 → (sin‘(𝑛 · 𝑋)) = (sin‘(𝑘 · 𝑋)))
3533, 34oveq12d 7160 . . . . 5 (𝑛 = 𝑘 → ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))) = ((𝐵𝑘) · (sin‘(𝑘 · 𝑋))))
3632, 35oveq12d 7160 . . . 4 (𝑛 = 𝑘 → (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))) = (((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))))
3714, 28, 36cbvmpt 5153 . . 3 (𝑛 ∈ ℕ ↦ (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) = (𝑘 ∈ ℕ ↦ (((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))))
381, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 37fourierdlem115 42596 . 2 (𝜑 → (seq1( + , (𝑛 ∈ ℕ ↦ (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))))) ⇝ (((𝐿 + 𝑅) / 2) − ((𝐴‘0) / 2)) ∧ (((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) = ((𝐿 + 𝑅) / 2)))
3938simprd 498 1 (𝜑 → (((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) = ((𝐿 + 𝑅) / 2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wne 3016  cdif 3921  c0 4279   class class class wbr 5052  cmpt 5132  dom cdm 5541  cres 5543  wf 6337  cfv 6341  (class class class)co 7142  Fincfn 8495  cc 10521  cr 10522  0cc0 10523  1c1 10524   + caddc 10526   · cmul 10528  +∞cpnf 10658  -∞cmnf 10659  cmin 10856  -cneg 10857   / cdiv 11283  cn 11624  2c2 11679  0cn0 11884  (,)cioo 12725  (,]cioc 12726  [,)cico 12727  seqcseq 13359  cli 14826  Σcsu 15027  sincsin 15402  cosccos 15403  πcpi 15405  cnccncf 23467  citg 24202   lim climc 24445   D cdv 24446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5252  ax-pr 5316  ax-un 7447  ax-inf2 9090  ax-cc 9843  ax-cnex 10579  ax-resscn 10580  ax-1cn 10581  ax-icn 10582  ax-addcl 10583  ax-addrcl 10584  ax-mulcl 10585  ax-mulrcl 10586  ax-mulcom 10587  ax-addass 10588  ax-mulass 10589  ax-distr 10590  ax-i2m1 10591  ax-1ne0 10592  ax-1rid 10593  ax-rnegex 10594  ax-rrecex 10595  ax-cnre 10596  ax-pre-lttri 10597  ax-pre-lttrn 10598  ax-pre-ltadd 10599  ax-pre-mulgt0 10600  ax-pre-sup 10601  ax-addf 10602  ax-mulf 10603
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3488  df-sbc 3764  df-csb 3872  df-dif 3927  df-un 3929  df-in 3931  df-ss 3940  df-pss 3942  df-symdif 4207  df-nul 4280  df-if 4454  df-pw 4527  df-sn 4554  df-pr 4556  df-tp 4558  df-op 4560  df-uni 4825  df-int 4863  df-iun 4907  df-iin 4908  df-disj 5018  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5446  df-eprel 5451  df-po 5460  df-so 5461  df-fr 5500  df-se 5501  df-we 5502  df-xp 5547  df-rel 5548  df-cnv 5549  df-co 5550  df-dm 5551  df-rn 5552  df-res 5553  df-ima 5554  df-pred 6134  df-ord 6180  df-on 6181  df-lim 6182  df-suc 6183  df-iota 6300  df-fun 6343  df-fn 6344  df-f 6345  df-f1 6346  df-fo 6347  df-f1o 6348  df-fv 6349  df-isom 6350  df-riota 7100  df-ov 7145  df-oprab 7146  df-mpo 7147  df-of 7395  df-ofr 7396  df-om 7567  df-1st 7675  df-2nd 7676  df-supp 7817  df-wrecs 7933  df-recs 7994  df-rdg 8032  df-1o 8088  df-2o 8089  df-oadd 8092  df-omul 8093  df-er 8275  df-map 8394  df-pm 8395  df-ixp 8448  df-en 8496  df-dom 8497  df-sdom 8498  df-fin 8499  df-fsupp 8820  df-fi 8861  df-sup 8892  df-inf 8893  df-oi 8960  df-dju 9316  df-card 9354  df-acn 9357  df-pnf 10663  df-mnf 10664  df-xr 10665  df-ltxr 10666  df-le 10667  df-sub 10858  df-neg 10859  df-div 11284  df-nn 11625  df-2 11687  df-3 11688  df-4 11689  df-5 11690  df-6 11691  df-7 11692  df-8 11693  df-9 11694  df-n0 11885  df-xnn0 11955  df-z 11969  df-dec 12086  df-uz 12231  df-q 12336  df-rp 12377  df-xneg 12494  df-xadd 12495  df-xmul 12496  df-ioo 12729  df-ioc 12730  df-ico 12731  df-icc 12732  df-fz 12883  df-fzo 13024  df-fl 13152  df-mod 13228  df-seq 13360  df-exp 13420  df-fac 13624  df-bc 13653  df-hash 13681  df-shft 14411  df-cj 14443  df-re 14444  df-im 14445  df-sqrt 14579  df-abs 14580  df-limsup 14813  df-clim 14830  df-rlim 14831  df-sum 15028  df-ef 15406  df-sin 15408  df-cos 15409  df-pi 15411  df-struct 16468  df-ndx 16469  df-slot 16470  df-base 16472  df-sets 16473  df-ress 16474  df-plusg 16561  df-mulr 16562  df-starv 16563  df-sca 16564  df-vsca 16565  df-ip 16566  df-tset 16567  df-ple 16568  df-ds 16570  df-unif 16571  df-hom 16572  df-cco 16573  df-rest 16679  df-topn 16680  df-0g 16698  df-gsum 16699  df-topgen 16700  df-pt 16701  df-prds 16704  df-xrs 16758  df-qtop 16763  df-imas 16764  df-xps 16766  df-mre 16840  df-mrc 16841  df-acs 16843  df-mgm 17835  df-sgrp 17884  df-mnd 17895  df-submnd 17940  df-mulg 18208  df-cntz 18430  df-cmn 18891  df-psmet 20520  df-xmet 20521  df-met 20522  df-bl 20523  df-mopn 20524  df-fbas 20525  df-fg 20526  df-cnfld 20529  df-top 21485  df-topon 21502  df-topsp 21524  df-bases 21537  df-cld 21610  df-ntr 21611  df-cls 21612  df-nei 21689  df-lp 21727  df-perf 21728  df-cn 21818  df-cnp 21819  df-t1 21905  df-haus 21906  df-cmp 21978  df-tx 22153  df-hmeo 22346  df-fil 22437  df-fm 22529  df-flim 22530  df-flf 22531  df-xms 22913  df-ms 22914  df-tms 22915  df-cncf 23469  df-ovol 24048  df-vol 24049  df-mbf 24203  df-itg1 24204  df-itg2 24205  df-ibl 24206  df-itg 24207  df-0p 24254  df-ditg 24430  df-limc 24449  df-dv 24450
This theorem is referenced by:  fourier  42600  fouriercnp  42601  fourier2  42602
  Copyright terms: Public domain W3C validator