Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsumrp0cl Structured version   Visualization version   GIF version

Theorem fsumrp0cl 29504
Description: Closure of a finite sum of nonnegative reals. (Contributed by Thierry Arnoux, 25-Jun-2017.)
Hypotheses
Ref Expression
fsumrp0cl.1 (𝜑𝐴 ∈ Fin)
fsumrp0cl.2 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,)+∞))
Assertion
Ref Expression
fsumrp0cl (𝜑 → Σ𝑘𝐴 𝐵 ∈ (0[,)+∞))
Distinct variable groups:   𝐴,𝑘   𝜑,𝑘
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem fsumrp0cl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rge0ssre 12230 . . . 4 (0[,)+∞) ⊆ ℝ
2 ax-resscn 9945 . . . 4 ℝ ⊆ ℂ
31, 2sstri 3596 . . 3 (0[,)+∞) ⊆ ℂ
43a1i 11 . 2 (𝜑 → (0[,)+∞) ⊆ ℂ)
5 simprl 793 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞))) → 𝑥 ∈ (0[,)+∞))
61, 5sseldi 3585 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞))) → 𝑥 ∈ ℝ)
7 simprr 795 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞))) → 𝑦 ∈ (0[,)+∞))
81, 7sseldi 3585 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞))) → 𝑦 ∈ ℝ)
96, 8readdcld 10021 . . . 4 ((𝜑 ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞))) → (𝑥 + 𝑦) ∈ ℝ)
109rexrd 10041 . . 3 ((𝜑 ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞))) → (𝑥 + 𝑦) ∈ ℝ*)
11 0xr 10038 . . . . . . 7 0 ∈ ℝ*
12 pnfxr 10044 . . . . . . 7 +∞ ∈ ℝ*
13 elico1 12168 . . . . . . 7 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝑥 ∈ (0[,)+∞) ↔ (𝑥 ∈ ℝ* ∧ 0 ≤ 𝑥𝑥 < +∞)))
1411, 12, 13mp2an 707 . . . . . 6 (𝑥 ∈ (0[,)+∞) ↔ (𝑥 ∈ ℝ* ∧ 0 ≤ 𝑥𝑥 < +∞))
1514simp2bi 1075 . . . . 5 (𝑥 ∈ (0[,)+∞) → 0 ≤ 𝑥)
165, 15syl 17 . . . 4 ((𝜑 ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞))) → 0 ≤ 𝑥)
17 elico1 12168 . . . . . . 7 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝑦 ∈ (0[,)+∞) ↔ (𝑦 ∈ ℝ* ∧ 0 ≤ 𝑦𝑦 < +∞)))
1811, 12, 17mp2an 707 . . . . . 6 (𝑦 ∈ (0[,)+∞) ↔ (𝑦 ∈ ℝ* ∧ 0 ≤ 𝑦𝑦 < +∞))
1918simp2bi 1075 . . . . 5 (𝑦 ∈ (0[,)+∞) → 0 ≤ 𝑦)
207, 19syl 17 . . . 4 ((𝜑 ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞))) → 0 ≤ 𝑦)
216, 8, 16, 20addge0d 10555 . . 3 ((𝜑 ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞))) → 0 ≤ (𝑥 + 𝑦))
22 ltpnf 11906 . . . 4 ((𝑥 + 𝑦) ∈ ℝ → (𝑥 + 𝑦) < +∞)
239, 22syl 17 . . 3 ((𝜑 ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞))) → (𝑥 + 𝑦) < +∞)
24 elico1 12168 . . . 4 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((𝑥 + 𝑦) ∈ (0[,)+∞) ↔ ((𝑥 + 𝑦) ∈ ℝ* ∧ 0 ≤ (𝑥 + 𝑦) ∧ (𝑥 + 𝑦) < +∞)))
2511, 12, 24mp2an 707 . . 3 ((𝑥 + 𝑦) ∈ (0[,)+∞) ↔ ((𝑥 + 𝑦) ∈ ℝ* ∧ 0 ≤ (𝑥 + 𝑦) ∧ (𝑥 + 𝑦) < +∞))
2610, 21, 23, 25syl3anbrc 1244 . 2 ((𝜑 ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞))) → (𝑥 + 𝑦) ∈ (0[,)+∞))
27 fsumrp0cl.1 . 2 (𝜑𝐴 ∈ Fin)
28 fsumrp0cl.2 . 2 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,)+∞))
29 0e0icopnf 12232 . . 3 0 ∈ (0[,)+∞)
3029a1i 11 . 2 (𝜑 → 0 ∈ (0[,)+∞))
314, 26, 27, 28, 30fsumcllem 14404 1 (𝜑 → Σ𝑘𝐴 𝐵 ∈ (0[,)+∞))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036  wcel 1987  wss 3559   class class class wbr 4618  (class class class)co 6610  Fincfn 7907  cc 9886  cr 9887  0cc0 9888   + caddc 9891  +∞cpnf 10023  *cxr 10025   < clt 10026  cle 10027  [,)cico 12127  Σcsu 14358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-inf2 8490  ax-cnex 9944  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965  ax-pre-sup 9966
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-isom 5861  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-1st 7120  df-2nd 7121  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-oadd 7516  df-er 7694  df-en 7908  df-dom 7909  df-sdom 7910  df-fin 7911  df-sup 8300  df-oi 8367  df-card 8717  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221  df-div 10637  df-nn 10973  df-2 11031  df-3 11032  df-n0 11245  df-z 11330  df-uz 11640  df-rp 11785  df-ico 12131  df-fz 12277  df-fzo 12415  df-seq 12750  df-exp 12809  df-hash 13066  df-cj 13781  df-re 13782  df-im 13783  df-sqrt 13917  df-abs 13918  df-clim 14161  df-sum 14359
This theorem is referenced by:  esumcvg  29953
  Copyright terms: Public domain W3C validator