Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsumrp0cl Structured version   Visualization version   GIF version

Theorem fsumrp0cl 30682
Description: Closure of a finite sum of nonnegative reals. (Contributed by Thierry Arnoux, 25-Jun-2017.)
Hypotheses
Ref Expression
fsumrp0cl.1 (𝜑𝐴 ∈ Fin)
fsumrp0cl.2 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,)+∞))
Assertion
Ref Expression
fsumrp0cl (𝜑 → Σ𝑘𝐴 𝐵 ∈ (0[,)+∞))
Distinct variable groups:   𝐴,𝑘   𝜑,𝑘
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem fsumrp0cl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rge0ssre 12845 . . . 4 (0[,)+∞) ⊆ ℝ
2 ax-resscn 10594 . . . 4 ℝ ⊆ ℂ
31, 2sstri 3976 . . 3 (0[,)+∞) ⊆ ℂ
43a1i 11 . 2 (𝜑 → (0[,)+∞) ⊆ ℂ)
5 simprl 769 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞))) → 𝑥 ∈ (0[,)+∞))
61, 5sseldi 3965 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞))) → 𝑥 ∈ ℝ)
7 simprr 771 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞))) → 𝑦 ∈ (0[,)+∞))
81, 7sseldi 3965 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞))) → 𝑦 ∈ ℝ)
96, 8readdcld 10670 . . . 4 ((𝜑 ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞))) → (𝑥 + 𝑦) ∈ ℝ)
109rexrd 10691 . . 3 ((𝜑 ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞))) → (𝑥 + 𝑦) ∈ ℝ*)
11 0xr 10688 . . . . . . 7 0 ∈ ℝ*
12 pnfxr 10695 . . . . . . 7 +∞ ∈ ℝ*
13 elico1 12782 . . . . . . 7 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝑥 ∈ (0[,)+∞) ↔ (𝑥 ∈ ℝ* ∧ 0 ≤ 𝑥𝑥 < +∞)))
1411, 12, 13mp2an 690 . . . . . 6 (𝑥 ∈ (0[,)+∞) ↔ (𝑥 ∈ ℝ* ∧ 0 ≤ 𝑥𝑥 < +∞))
1514simp2bi 1142 . . . . 5 (𝑥 ∈ (0[,)+∞) → 0 ≤ 𝑥)
165, 15syl 17 . . . 4 ((𝜑 ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞))) → 0 ≤ 𝑥)
17 elico1 12782 . . . . . . 7 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝑦 ∈ (0[,)+∞) ↔ (𝑦 ∈ ℝ* ∧ 0 ≤ 𝑦𝑦 < +∞)))
1811, 12, 17mp2an 690 . . . . . 6 (𝑦 ∈ (0[,)+∞) ↔ (𝑦 ∈ ℝ* ∧ 0 ≤ 𝑦𝑦 < +∞))
1918simp2bi 1142 . . . . 5 (𝑦 ∈ (0[,)+∞) → 0 ≤ 𝑦)
207, 19syl 17 . . . 4 ((𝜑 ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞))) → 0 ≤ 𝑦)
216, 8, 16, 20addge0d 11216 . . 3 ((𝜑 ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞))) → 0 ≤ (𝑥 + 𝑦))
22 ltpnf 12516 . . . 4 ((𝑥 + 𝑦) ∈ ℝ → (𝑥 + 𝑦) < +∞)
239, 22syl 17 . . 3 ((𝜑 ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞))) → (𝑥 + 𝑦) < +∞)
24 elico1 12782 . . . 4 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((𝑥 + 𝑦) ∈ (0[,)+∞) ↔ ((𝑥 + 𝑦) ∈ ℝ* ∧ 0 ≤ (𝑥 + 𝑦) ∧ (𝑥 + 𝑦) < +∞)))
2511, 12, 24mp2an 690 . . 3 ((𝑥 + 𝑦) ∈ (0[,)+∞) ↔ ((𝑥 + 𝑦) ∈ ℝ* ∧ 0 ≤ (𝑥 + 𝑦) ∧ (𝑥 + 𝑦) < +∞))
2610, 21, 23, 25syl3anbrc 1339 . 2 ((𝜑 ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞))) → (𝑥 + 𝑦) ∈ (0[,)+∞))
27 fsumrp0cl.1 . 2 (𝜑𝐴 ∈ Fin)
28 fsumrp0cl.2 . 2 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,)+∞))
29 0e0icopnf 12847 . . 3 0 ∈ (0[,)+∞)
3029a1i 11 . 2 (𝜑 → 0 ∈ (0[,)+∞))
314, 26, 27, 28, 30fsumcllem 15089 1 (𝜑 → Σ𝑘𝐴 𝐵 ∈ (0[,)+∞))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083  wcel 2114  wss 3936   class class class wbr 5066  (class class class)co 7156  Fincfn 8509  cc 10535  cr 10536  0cc0 10537   + caddc 10540  +∞cpnf 10672  *cxr 10674   < clt 10675  cle 10676  [,)cico 12741  Σcsu 15042
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-sup 8906  df-oi 8974  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-n0 11899  df-z 11983  df-uz 12245  df-rp 12391  df-ico 12745  df-fz 12894  df-fzo 13035  df-seq 13371  df-exp 13431  df-hash 13692  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-clim 14845  df-sum 15043
This theorem is referenced by:  esumcvg  31345
  Copyright terms: Public domain W3C validator