MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gexcl3 Structured version   Visualization version   GIF version

Theorem gexcl3 18712
Description: If the order of every group element is bounded by 𝑁, the group has finite exponent. (Contributed by Mario Carneiro, 24-Apr-2016.)
Hypotheses
Ref Expression
gexod.1 𝑋 = (Base‘𝐺)
gexod.2 𝐸 = (gEx‘𝐺)
gexod.3 𝑂 = (od‘𝐺)
Assertion
Ref Expression
gexcl3 ((𝐺 ∈ Grp ∧ ∀𝑥𝑋 (𝑂𝑥) ∈ (1...𝑁)) → 𝐸 ∈ ℕ)
Distinct variable groups:   𝑥,𝐸   𝑥,𝐺   𝑥,𝑁   𝑥,𝑋
Allowed substitution hint:   𝑂(𝑥)

Proof of Theorem gexcl3
StepHypRef Expression
1 simpl 485 . . 3 ((𝐺 ∈ Grp ∧ ∀𝑥𝑋 (𝑂𝑥) ∈ (1...𝑁)) → 𝐺 ∈ Grp)
2 gexod.1 . . . . . . . 8 𝑋 = (Base‘𝐺)
32grpbn0 18132 . . . . . . 7 (𝐺 ∈ Grp → 𝑋 ≠ ∅)
4 r19.2z 4440 . . . . . . 7 ((𝑋 ≠ ∅ ∧ ∀𝑥𝑋 (𝑂𝑥) ∈ (1...𝑁)) → ∃𝑥𝑋 (𝑂𝑥) ∈ (1...𝑁))
53, 4sylan 582 . . . . . 6 ((𝐺 ∈ Grp ∧ ∀𝑥𝑋 (𝑂𝑥) ∈ (1...𝑁)) → ∃𝑥𝑋 (𝑂𝑥) ∈ (1...𝑁))
6 elfzuz2 12913 . . . . . . . 8 ((𝑂𝑥) ∈ (1...𝑁) → 𝑁 ∈ (ℤ‘1))
7 nnuz 12282 . . . . . . . 8 ℕ = (ℤ‘1)
86, 7eleqtrrdi 2924 . . . . . . 7 ((𝑂𝑥) ∈ (1...𝑁) → 𝑁 ∈ ℕ)
98rexlimivw 3282 . . . . . 6 (∃𝑥𝑋 (𝑂𝑥) ∈ (1...𝑁) → 𝑁 ∈ ℕ)
105, 9syl 17 . . . . 5 ((𝐺 ∈ Grp ∧ ∀𝑥𝑋 (𝑂𝑥) ∈ (1...𝑁)) → 𝑁 ∈ ℕ)
1110nnnn0d 11956 . . . 4 ((𝐺 ∈ Grp ∧ ∀𝑥𝑋 (𝑂𝑥) ∈ (1...𝑁)) → 𝑁 ∈ ℕ0)
1211faccld 13645 . . 3 ((𝐺 ∈ Grp ∧ ∀𝑥𝑋 (𝑂𝑥) ∈ (1...𝑁)) → (!‘𝑁) ∈ ℕ)
13 elfzuzb 12903 . . . . . . . . 9 ((𝑂𝑥) ∈ (1...𝑁) ↔ ((𝑂𝑥) ∈ (ℤ‘1) ∧ 𝑁 ∈ (ℤ‘(𝑂𝑥))))
14 elnnuz 12283 . . . . . . . . . 10 ((𝑂𝑥) ∈ ℕ ↔ (𝑂𝑥) ∈ (ℤ‘1))
15 dvdsfac 15676 . . . . . . . . . 10 (((𝑂𝑥) ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑂𝑥))) → (𝑂𝑥) ∥ (!‘𝑁))
1614, 15sylanbr 584 . . . . . . . . 9 (((𝑂𝑥) ∈ (ℤ‘1) ∧ 𝑁 ∈ (ℤ‘(𝑂𝑥))) → (𝑂𝑥) ∥ (!‘𝑁))
1713, 16sylbi 219 . . . . . . . 8 ((𝑂𝑥) ∈ (1...𝑁) → (𝑂𝑥) ∥ (!‘𝑁))
1817adantl 484 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑥𝑋) ∧ (𝑂𝑥) ∈ (1...𝑁)) → (𝑂𝑥) ∥ (!‘𝑁))
19 simpll 765 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑥𝑋) ∧ (𝑂𝑥) ∈ (1...𝑁)) → 𝐺 ∈ Grp)
20 simplr 767 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑥𝑋) ∧ (𝑂𝑥) ∈ (1...𝑁)) → 𝑥𝑋)
218adantl 484 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝑥𝑋) ∧ (𝑂𝑥) ∈ (1...𝑁)) → 𝑁 ∈ ℕ)
2221nnnn0d 11956 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝑥𝑋) ∧ (𝑂𝑥) ∈ (1...𝑁)) → 𝑁 ∈ ℕ0)
2322faccld 13645 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑥𝑋) ∧ (𝑂𝑥) ∈ (1...𝑁)) → (!‘𝑁) ∈ ℕ)
2423nnzd 12087 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑥𝑋) ∧ (𝑂𝑥) ∈ (1...𝑁)) → (!‘𝑁) ∈ ℤ)
25 gexod.3 . . . . . . . . 9 𝑂 = (od‘𝐺)
26 eqid 2821 . . . . . . . . 9 (.g𝐺) = (.g𝐺)
27 eqid 2821 . . . . . . . . 9 (0g𝐺) = (0g𝐺)
282, 25, 26, 27oddvds 18675 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑥𝑋 ∧ (!‘𝑁) ∈ ℤ) → ((𝑂𝑥) ∥ (!‘𝑁) ↔ ((!‘𝑁)(.g𝐺)𝑥) = (0g𝐺)))
2919, 20, 24, 28syl3anc 1367 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑥𝑋) ∧ (𝑂𝑥) ∈ (1...𝑁)) → ((𝑂𝑥) ∥ (!‘𝑁) ↔ ((!‘𝑁)(.g𝐺)𝑥) = (0g𝐺)))
3018, 29mpbid 234 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑥𝑋) ∧ (𝑂𝑥) ∈ (1...𝑁)) → ((!‘𝑁)(.g𝐺)𝑥) = (0g𝐺))
3130ex 415 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑥𝑋) → ((𝑂𝑥) ∈ (1...𝑁) → ((!‘𝑁)(.g𝐺)𝑥) = (0g𝐺)))
3231ralimdva 3177 . . . 4 (𝐺 ∈ Grp → (∀𝑥𝑋 (𝑂𝑥) ∈ (1...𝑁) → ∀𝑥𝑋 ((!‘𝑁)(.g𝐺)𝑥) = (0g𝐺)))
3332imp 409 . . 3 ((𝐺 ∈ Grp ∧ ∀𝑥𝑋 (𝑂𝑥) ∈ (1...𝑁)) → ∀𝑥𝑋 ((!‘𝑁)(.g𝐺)𝑥) = (0g𝐺))
34 gexod.2 . . . 4 𝐸 = (gEx‘𝐺)
352, 34, 26, 27gexlem2 18707 . . 3 ((𝐺 ∈ Grp ∧ (!‘𝑁) ∈ ℕ ∧ ∀𝑥𝑋 ((!‘𝑁)(.g𝐺)𝑥) = (0g𝐺)) → 𝐸 ∈ (1...(!‘𝑁)))
361, 12, 33, 35syl3anc 1367 . 2 ((𝐺 ∈ Grp ∧ ∀𝑥𝑋 (𝑂𝑥) ∈ (1...𝑁)) → 𝐸 ∈ (1...(!‘𝑁)))
37 elfznn 12937 . 2 (𝐸 ∈ (1...(!‘𝑁)) → 𝐸 ∈ ℕ)
3836, 37syl 17 1 ((𝐺 ∈ Grp ∧ ∀𝑥𝑋 (𝑂𝑥) ∈ (1...𝑁)) → 𝐸 ∈ ℕ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wne 3016  wral 3138  wrex 3139  c0 4291   class class class wbr 5066  cfv 6355  (class class class)co 7156  1c1 10538  cn 11638  cz 11982  cuz 12244  ...cfz 12893  !cfa 13634  cdvds 15607  Basecbs 16483  0gc0g 16713  Grpcgrp 18103  .gcmg 18224  odcod 18652  gExcgex 18653
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-sup 8906  df-inf 8907  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-n0 11899  df-z 11983  df-uz 12245  df-rp 12391  df-fz 12894  df-fl 13163  df-mod 13239  df-seq 13371  df-exp 13431  df-fac 13635  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-dvds 15608  df-0g 16715  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-grp 18106  df-minusg 18107  df-sbg 18108  df-mulg 18225  df-od 18656  df-gex 18657
This theorem is referenced by:  gexcl2  18714
  Copyright terms: Public domain W3C validator