![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gexcl2 | Structured version Visualization version GIF version |
Description: The exponent of a finite group is finite. (Contributed by Mario Carneiro, 24-Apr-2016.) |
Ref | Expression |
---|---|
gexcl2.1 | ⊢ 𝑋 = (Base‘𝐺) |
gexcl2.2 | ⊢ 𝐸 = (gEx‘𝐺) |
Ref | Expression |
---|---|
gexcl2 | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) → 𝐸 ∈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gexcl2.1 | . . . . . 6 ⊢ 𝑋 = (Base‘𝐺) | |
2 | eqid 2651 | . . . . . 6 ⊢ (od‘𝐺) = (od‘𝐺) | |
3 | 1, 2 | odcl2 18028 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑥 ∈ 𝑋) → ((od‘𝐺)‘𝑥) ∈ ℕ) |
4 | 1, 2 | oddvds2 18029 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑥 ∈ 𝑋) → ((od‘𝐺)‘𝑥) ∥ (#‘𝑋)) |
5 | 3 | nnzd 11519 | . . . . . . 7 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑥 ∈ 𝑋) → ((od‘𝐺)‘𝑥) ∈ ℤ) |
6 | 1 | grpbn0 17498 | . . . . . . . . 9 ⊢ (𝐺 ∈ Grp → 𝑋 ≠ ∅) |
7 | 6 | 3ad2ant1 1102 | . . . . . . . 8 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑥 ∈ 𝑋) → 𝑋 ≠ ∅) |
8 | hashnncl 13195 | . . . . . . . . 9 ⊢ (𝑋 ∈ Fin → ((#‘𝑋) ∈ ℕ ↔ 𝑋 ≠ ∅)) | |
9 | 8 | 3ad2ant2 1103 | . . . . . . . 8 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑥 ∈ 𝑋) → ((#‘𝑋) ∈ ℕ ↔ 𝑋 ≠ ∅)) |
10 | 7, 9 | mpbird 247 | . . . . . . 7 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑥 ∈ 𝑋) → (#‘𝑋) ∈ ℕ) |
11 | dvdsle 15079 | . . . . . . 7 ⊢ ((((od‘𝐺)‘𝑥) ∈ ℤ ∧ (#‘𝑋) ∈ ℕ) → (((od‘𝐺)‘𝑥) ∥ (#‘𝑋) → ((od‘𝐺)‘𝑥) ≤ (#‘𝑋))) | |
12 | 5, 10, 11 | syl2anc 694 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑥 ∈ 𝑋) → (((od‘𝐺)‘𝑥) ∥ (#‘𝑋) → ((od‘𝐺)‘𝑥) ≤ (#‘𝑋))) |
13 | 4, 12 | mpd 15 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑥 ∈ 𝑋) → ((od‘𝐺)‘𝑥) ≤ (#‘𝑋)) |
14 | 10 | nnzd 11519 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑥 ∈ 𝑋) → (#‘𝑋) ∈ ℤ) |
15 | fznn 12446 | . . . . . 6 ⊢ ((#‘𝑋) ∈ ℤ → (((od‘𝐺)‘𝑥) ∈ (1...(#‘𝑋)) ↔ (((od‘𝐺)‘𝑥) ∈ ℕ ∧ ((od‘𝐺)‘𝑥) ≤ (#‘𝑋)))) | |
16 | 14, 15 | syl 17 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑥 ∈ 𝑋) → (((od‘𝐺)‘𝑥) ∈ (1...(#‘𝑋)) ↔ (((od‘𝐺)‘𝑥) ∈ ℕ ∧ ((od‘𝐺)‘𝑥) ≤ (#‘𝑋)))) |
17 | 3, 13, 16 | mpbir2and 977 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑥 ∈ 𝑋) → ((od‘𝐺)‘𝑥) ∈ (1...(#‘𝑋))) |
18 | 17 | 3expa 1284 | . . 3 ⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ 𝑥 ∈ 𝑋) → ((od‘𝐺)‘𝑥) ∈ (1...(#‘𝑋))) |
19 | 18 | ralrimiva 2995 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) → ∀𝑥 ∈ 𝑋 ((od‘𝐺)‘𝑥) ∈ (1...(#‘𝑋))) |
20 | gexcl2.2 | . . 3 ⊢ 𝐸 = (gEx‘𝐺) | |
21 | 1, 20, 2 | gexcl3 18048 | . 2 ⊢ ((𝐺 ∈ Grp ∧ ∀𝑥 ∈ 𝑋 ((od‘𝐺)‘𝑥) ∈ (1...(#‘𝑋))) → 𝐸 ∈ ℕ) |
22 | 19, 21 | syldan 486 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) → 𝐸 ∈ ℕ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 ∧ w3a 1054 = wceq 1523 ∈ wcel 2030 ≠ wne 2823 ∀wral 2941 ∅c0 3948 class class class wbr 4685 ‘cfv 5926 (class class class)co 6690 Fincfn 7997 1c1 9975 ≤ cle 10113 ℕcn 11058 ℤcz 11415 ...cfz 12364 #chash 13157 ∥ cdvds 15027 Basecbs 15904 Grpcgrp 17469 odcod 17990 gExcgex 17991 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-inf2 8576 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 ax-pre-sup 10052 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-fal 1529 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-disj 4653 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-se 5103 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-isom 5935 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-2o 7606 df-oadd 7609 df-omul 7610 df-er 7787 df-ec 7789 df-qs 7793 df-map 7901 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-sup 8389 df-inf 8390 df-oi 8456 df-card 8803 df-acn 8806 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-div 10723 df-nn 11059 df-2 11117 df-3 11118 df-n0 11331 df-z 11416 df-uz 11726 df-rp 11871 df-fz 12365 df-fzo 12505 df-fl 12633 df-mod 12709 df-seq 12842 df-exp 12901 df-fac 13101 df-hash 13158 df-cj 13883 df-re 13884 df-im 13885 df-sqrt 14019 df-abs 14020 df-clim 14263 df-sum 14461 df-dvds 15028 df-ndx 15907 df-slot 15908 df-base 15910 df-sets 15911 df-ress 15912 df-plusg 16001 df-0g 16149 df-mgm 17289 df-sgrp 17331 df-mnd 17342 df-grp 17472 df-minusg 17473 df-sbg 17474 df-mulg 17588 df-subg 17638 df-eqg 17640 df-od 17994 df-gex 17995 |
This theorem is referenced by: cyggexb 18346 pgpfac1lem3a 18521 pgpfaclem3 18528 |
Copyright terms: Public domain | W3C validator |