HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hhip Structured version   Visualization version   GIF version

Theorem hhip 27922
Description: The inner product operation of Hilbert space. (Contributed by NM, 17-Nov-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Hypothesis
Ref Expression
hhnv.1 𝑈 = ⟨⟨ + , · ⟩, norm
Assertion
Ref Expression
hhip ·ih = (·𝑖OLD𝑈)

Proof of Theorem hhip
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 polid 27904 . . . 4 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 ·ih 𝑦) = (((((norm‘(𝑥 + 𝑦))↑2) − ((norm‘(𝑥 𝑦))↑2)) + (i · (((norm‘(𝑥 + (i · 𝑦)))↑2) − ((norm‘(𝑥 (i · 𝑦)))↑2)))) / 4))
2 hhnv.1 . . . . . 6 𝑈 = ⟨⟨ + , · ⟩, norm
32hhnv 27910 . . . . 5 𝑈 ∈ NrmCVec
42hhba 27912 . . . . . 6 ℋ = (BaseSet‘𝑈)
52hhva 27911 . . . . . 6 + = ( +𝑣𝑈)
62hhsm 27914 . . . . . 6 · = ( ·𝑠OLD𝑈)
72hhnm 27916 . . . . . 6 norm = (normCV𝑈)
8 eqid 2621 . . . . . 6 (·𝑖OLD𝑈) = (·𝑖OLD𝑈)
92hhvs 27915 . . . . . 6 = ( −𝑣𝑈)
104, 5, 6, 7, 8, 9ipval3 27452 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥(·𝑖OLD𝑈)𝑦) = (((((norm‘(𝑥 + 𝑦))↑2) − ((norm‘(𝑥 𝑦))↑2)) + (i · (((norm‘(𝑥 + (i · 𝑦)))↑2) − ((norm‘(𝑥 (i · 𝑦)))↑2)))) / 4))
113, 10mp3an1 1408 . . . 4 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥(·𝑖OLD𝑈)𝑦) = (((((norm‘(𝑥 + 𝑦))↑2) − ((norm‘(𝑥 𝑦))↑2)) + (i · (((norm‘(𝑥 + (i · 𝑦)))↑2) − ((norm‘(𝑥 (i · 𝑦)))↑2)))) / 4))
121, 11eqtr4d 2658 . . 3 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 ·ih 𝑦) = (𝑥(·𝑖OLD𝑈)𝑦))
1312rgen2a 2973 . 2 𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih 𝑦) = (𝑥(·𝑖OLD𝑈)𝑦)
14 ax-hfi 27824 . . 3 ·ih :( ℋ × ℋ)⟶ℂ
154, 8ipf 27456 . . . 4 (𝑈 ∈ NrmCVec → (·𝑖OLD𝑈):( ℋ × ℋ)⟶ℂ)
163, 15ax-mp 5 . . 3 (·𝑖OLD𝑈):( ℋ × ℋ)⟶ℂ
17 ffn 6012 . . . 4 ( ·ih :( ℋ × ℋ)⟶ℂ → ·ih Fn ( ℋ × ℋ))
18 ffn 6012 . . . 4 ((·𝑖OLD𝑈):( ℋ × ℋ)⟶ℂ → (·𝑖OLD𝑈) Fn ( ℋ × ℋ))
19 eqfnov2 6732 . . . 4 (( ·ih Fn ( ℋ × ℋ) ∧ (·𝑖OLD𝑈) Fn ( ℋ × ℋ)) → ( ·ih = (·𝑖OLD𝑈) ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih 𝑦) = (𝑥(·𝑖OLD𝑈)𝑦)))
2017, 18, 19syl2an 494 . . 3 (( ·ih :( ℋ × ℋ)⟶ℂ ∧ (·𝑖OLD𝑈):( ℋ × ℋ)⟶ℂ) → ( ·ih = (·𝑖OLD𝑈) ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih 𝑦) = (𝑥(·𝑖OLD𝑈)𝑦)))
2114, 16, 20mp2an 707 . 2 ( ·ih = (·𝑖OLD𝑈) ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih 𝑦) = (𝑥(·𝑖OLD𝑈)𝑦))
2213, 21mpbir 221 1 ·ih = (·𝑖OLD𝑈)
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384   = wceq 1480  wcel 1987  wral 2908  cop 4161   × cxp 5082   Fn wfn 5852  wf 5853  cfv 5857  (class class class)co 6615  cc 9894  ici 9898   + caddc 9899   · cmul 9901  cmin 10226   / cdiv 10644  2c2 11030  4c4 11032  cexp 12816  NrmCVeccnv 27327  ·𝑖OLDcdip 27443  chil 27664   + cva 27665   · csm 27666   ·ih csp 27667  normcno 27668   cmv 27670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-inf2 8498  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973  ax-pre-sup 9974  ax-hilex 27744  ax-hfvadd 27745  ax-hvcom 27746  ax-hvass 27747  ax-hv0cl 27748  ax-hvaddid 27749  ax-hfvmul 27750  ax-hvmulid 27751  ax-hvmulass 27752  ax-hvdistr1 27753  ax-hvdistr2 27754  ax-hvmul0 27755  ax-hfi 27824  ax-his1 27827  ax-his2 27828  ax-his3 27829  ax-his4 27830
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rmo 2916  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-int 4448  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-se 5044  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-isom 5866  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-om 7028  df-1st 7128  df-2nd 7129  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-1o 7520  df-oadd 7524  df-er 7702  df-en 7916  df-dom 7917  df-sdom 7918  df-fin 7919  df-sup 8308  df-oi 8375  df-card 8725  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-div 10645  df-nn 10981  df-2 11039  df-3 11040  df-4 11041  df-n0 11253  df-z 11338  df-uz 11648  df-rp 11793  df-fz 12285  df-fzo 12423  df-seq 12758  df-exp 12817  df-hash 13074  df-cj 13789  df-re 13790  df-im 13791  df-sqrt 13925  df-abs 13926  df-clim 14169  df-sum 14367  df-grpo 27235  df-gid 27236  df-ginv 27237  df-gdiv 27238  df-ablo 27287  df-vc 27302  df-nv 27335  df-va 27338  df-ba 27339  df-sm 27340  df-0v 27341  df-vs 27342  df-nmcv 27343  df-dip 27444  df-hnorm 27713  df-hvsub 27716
This theorem is referenced by:  bcsiHIL  27925  occllem  28050  hmopbdoptHIL  28735
  Copyright terms: Public domain W3C validator