HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hhph Structured version   Visualization version   GIF version

Theorem hhph 27212
Description: The Hilbert space of the Hilbert Space Explorer is an inner product space. (Contributed by NM, 24-Nov-2007.) (New usage is discouraged.)
Hypothesis
Ref Expression
hhnv.1 𝑈 = ⟨⟨ + , · ⟩, norm
Assertion
Ref Expression
hhph 𝑈 ∈ CPreHilOLD

Proof of Theorem hhph
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2609 . . 3 ⟨⟨ + , · ⟩, norm⟩ = ⟨⟨ + , · ⟩, norm
21hhnv 27199 . 2 ⟨⟨ + , · ⟩, norm⟩ ∈ NrmCVec
3 normpar 27189 . . . 4 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (((norm‘(𝑥 𝑦))↑2) + ((norm‘(𝑥 + 𝑦))↑2)) = ((2 · ((norm𝑥)↑2)) + (2 · ((norm𝑦)↑2))))
4 hvsubval 27050 . . . . . . . 8 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 𝑦) = (𝑥 + (-1 · 𝑦)))
54fveq2d 6091 . . . . . . 7 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (norm‘(𝑥 𝑦)) = (norm‘(𝑥 + (-1 · 𝑦))))
65oveq1d 6541 . . . . . 6 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((norm‘(𝑥 𝑦))↑2) = ((norm‘(𝑥 + (-1 · 𝑦)))↑2))
76oveq2d 6542 . . . . 5 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (((norm‘(𝑥 + 𝑦))↑2) + ((norm‘(𝑥 𝑦))↑2)) = (((norm‘(𝑥 + 𝑦))↑2) + ((norm‘(𝑥 + (-1 · 𝑦)))↑2)))
8 hvaddcl 27046 . . . . . . . . 9 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 + 𝑦) ∈ ℋ)
9 normcl 27159 . . . . . . . . 9 ((𝑥 + 𝑦) ∈ ℋ → (norm‘(𝑥 + 𝑦)) ∈ ℝ)
108, 9syl 17 . . . . . . . 8 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (norm‘(𝑥 + 𝑦)) ∈ ℝ)
1110recnd 9924 . . . . . . 7 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (norm‘(𝑥 + 𝑦)) ∈ ℂ)
1211sqcld 12825 . . . . . 6 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((norm‘(𝑥 + 𝑦))↑2) ∈ ℂ)
13 hvsubcl 27051 . . . . . . . 8 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 𝑦) ∈ ℋ)
14 normcl 27159 . . . . . . . . 9 ((𝑥 𝑦) ∈ ℋ → (norm‘(𝑥 𝑦)) ∈ ℝ)
1514recnd 9924 . . . . . . . 8 ((𝑥 𝑦) ∈ ℋ → (norm‘(𝑥 𝑦)) ∈ ℂ)
1613, 15syl 17 . . . . . . 7 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (norm‘(𝑥 𝑦)) ∈ ℂ)
1716sqcld 12825 . . . . . 6 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((norm‘(𝑥 𝑦))↑2) ∈ ℂ)
1812, 17addcomd 10089 . . . . 5 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (((norm‘(𝑥 + 𝑦))↑2) + ((norm‘(𝑥 𝑦))↑2)) = (((norm‘(𝑥 𝑦))↑2) + ((norm‘(𝑥 + 𝑦))↑2)))
197, 18eqtr3d 2645 . . . 4 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (((norm‘(𝑥 + 𝑦))↑2) + ((norm‘(𝑥 + (-1 · 𝑦)))↑2)) = (((norm‘(𝑥 𝑦))↑2) + ((norm‘(𝑥 + 𝑦))↑2)))
20 normcl 27159 . . . . . . 7 (𝑥 ∈ ℋ → (norm𝑥) ∈ ℝ)
2120recnd 9924 . . . . . 6 (𝑥 ∈ ℋ → (norm𝑥) ∈ ℂ)
2221sqcld 12825 . . . . 5 (𝑥 ∈ ℋ → ((norm𝑥)↑2) ∈ ℂ)
23 normcl 27159 . . . . . . 7 (𝑦 ∈ ℋ → (norm𝑦) ∈ ℝ)
2423recnd 9924 . . . . . 6 (𝑦 ∈ ℋ → (norm𝑦) ∈ ℂ)
2524sqcld 12825 . . . . 5 (𝑦 ∈ ℋ → ((norm𝑦)↑2) ∈ ℂ)
26 2cn 10940 . . . . . 6 2 ∈ ℂ
27 adddi 9881 . . . . . 6 ((2 ∈ ℂ ∧ ((norm𝑥)↑2) ∈ ℂ ∧ ((norm𝑦)↑2) ∈ ℂ) → (2 · (((norm𝑥)↑2) + ((norm𝑦)↑2))) = ((2 · ((norm𝑥)↑2)) + (2 · ((norm𝑦)↑2))))
2826, 27mp3an1 1402 . . . . 5 ((((norm𝑥)↑2) ∈ ℂ ∧ ((norm𝑦)↑2) ∈ ℂ) → (2 · (((norm𝑥)↑2) + ((norm𝑦)↑2))) = ((2 · ((norm𝑥)↑2)) + (2 · ((norm𝑦)↑2))))
2922, 25, 28syl2an 492 . . . 4 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (2 · (((norm𝑥)↑2) + ((norm𝑦)↑2))) = ((2 · ((norm𝑥)↑2)) + (2 · ((norm𝑦)↑2))))
303, 19, 293eqtr4d 2653 . . 3 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (((norm‘(𝑥 + 𝑦))↑2) + ((norm‘(𝑥 + (-1 · 𝑦)))↑2)) = (2 · (((norm𝑥)↑2) + ((norm𝑦)↑2))))
3130rgen2a 2959 . 2 𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (((norm‘(𝑥 + 𝑦))↑2) + ((norm‘(𝑥 + (-1 · 𝑦)))↑2)) = (2 · (((norm𝑥)↑2) + ((norm𝑦)↑2)))
32 hilablo 27194 . . . 4 + ∈ AbelOp
3332elexi 3185 . . 3 + ∈ V
34 hvmulex 27045 . . 3 · ∈ V
35 normf 27157 . . . 4 norm: ℋ⟶ℝ
36 ax-hilex 27033 . . . 4 ℋ ∈ V
37 fex 6371 . . . 4 ((norm: ℋ⟶ℝ ∧ ℋ ∈ V) → norm ∈ V)
3835, 36, 37mp2an 703 . . 3 norm ∈ V
39 hhnv.1 . . . . 5 𝑈 = ⟨⟨ + , · ⟩, norm
4039eleq1i 2678 . . . 4 (𝑈 ∈ CPreHilOLD ↔ ⟨⟨ + , · ⟩, norm⟩ ∈ CPreHilOLD)
41 ablogrpo 26578 . . . . . . 7 ( + ∈ AbelOp → + ∈ GrpOp)
4232, 41ax-mp 5 . . . . . 6 + ∈ GrpOp
43 ax-hfvadd 27034 . . . . . . 7 + :( ℋ × ℋ)⟶ ℋ
4443fdmi 5950 . . . . . 6 dom + = ( ℋ × ℋ)
4542, 44grporn 26552 . . . . 5 ℋ = ran +
4645isphg 26849 . . . 4 (( + ∈ V ∧ · ∈ V ∧ norm ∈ V) → (⟨⟨ + , · ⟩, norm⟩ ∈ CPreHilOLD ↔ (⟨⟨ + , · ⟩, norm⟩ ∈ NrmCVec ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (((norm‘(𝑥 + 𝑦))↑2) + ((norm‘(𝑥 + (-1 · 𝑦)))↑2)) = (2 · (((norm𝑥)↑2) + ((norm𝑦)↑2))))))
4740, 46syl5bb 270 . . 3 (( + ∈ V ∧ · ∈ V ∧ norm ∈ V) → (𝑈 ∈ CPreHilOLD ↔ (⟨⟨ + , · ⟩, norm⟩ ∈ NrmCVec ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (((norm‘(𝑥 + 𝑦))↑2) + ((norm‘(𝑥 + (-1 · 𝑦)))↑2)) = (2 · (((norm𝑥)↑2) + ((norm𝑦)↑2))))))
4833, 34, 38, 47mp3an 1415 . 2 (𝑈 ∈ CPreHilOLD ↔ (⟨⟨ + , · ⟩, norm⟩ ∈ NrmCVec ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (((norm‘(𝑥 + 𝑦))↑2) + ((norm‘(𝑥 + (-1 · 𝑦)))↑2)) = (2 · (((norm𝑥)↑2) + ((norm𝑦)↑2)))))
492, 31, 48mpbir2an 956 1 𝑈 ∈ CPreHilOLD
Colors of variables: wff setvar class
Syntax hints:  wb 194  wa 382  w3a 1030   = wceq 1474  wcel 1976  wral 2895  Vcvv 3172  cop 4130   × cxp 5025  wf 5785  cfv 5789  (class class class)co 6526  cc 9790  cr 9791  1c1 9793   + caddc 9795   · cmul 9797  -cneg 10118  2c2 10919  cexp 12679  GrpOpcgr 26520  AbelOpcablo 26575  NrmCVeccnv 26616  CPreHilOLDccphlo 26844  chil 26953   + cva 26954   · csm 26955  normcno 26957   cmv 26959
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4711  ax-pow 4763  ax-pr 4827  ax-un 6824  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869  ax-pre-sup 9870  ax-hilex 27033  ax-hfvadd 27034  ax-hvcom 27035  ax-hvass 27036  ax-hv0cl 27037  ax-hvaddid 27038  ax-hfvmul 27039  ax-hvmulid 27040  ax-hvmulass 27041  ax-hvdistr1 27042  ax-hvdistr2 27043  ax-hvmul0 27044  ax-hfi 27113  ax-his1 27116  ax-his2 27117  ax-his3 27118  ax-his4 27119
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4938  df-id 4942  df-po 4948  df-so 4949  df-fr 4986  df-we 4988  df-xp 5033  df-rel 5034  df-cnv 5035  df-co 5036  df-dm 5037  df-rn 5038  df-res 5039  df-ima 5040  df-pred 5582  df-ord 5628  df-on 5629  df-lim 5630  df-suc 5631  df-iota 5753  df-fun 5791  df-fn 5792  df-f 5793  df-f1 5794  df-fo 5795  df-f1o 5796  df-fv 5797  df-riota 6488  df-ov 6529  df-oprab 6530  df-mpt2 6531  df-om 6935  df-2nd 7037  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-er 7606  df-en 7819  df-dom 7820  df-sdom 7821  df-sup 8208  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-div 10536  df-nn 10870  df-2 10928  df-3 10929  df-4 10930  df-n0 11142  df-z 11213  df-uz 11522  df-rp 11667  df-seq 12621  df-exp 12680  df-cj 13635  df-re 13636  df-im 13637  df-sqrt 13771  df-abs 13772  df-grpo 26524  df-gid 26525  df-ablo 26576  df-vc 26591  df-nv 26624  df-ph 26845  df-hnorm 27002  df-hvsub 27005
This theorem is referenced by:  bcsiHIL  27214  hhhl  27238  hhssph  27308  pjhthlem2  27428
  Copyright terms: Public domain W3C validator