Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  infleinf Structured version   Visualization version   GIF version

Theorem infleinf 39039
Description: If any element of 𝐵 can be approximated from above by members of 𝐴, then the infimum of 𝐴 is smaller or equal to the infimum of 𝐵. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
infleinf.a (𝜑𝐴 ⊆ ℝ*)
infleinf.b (𝜑𝐵 ⊆ ℝ*)
infleinf.c ((𝜑𝑥𝐵𝑦 ∈ ℝ+) → ∃𝑧𝐴 𝑧 ≤ (𝑥 +𝑒 𝑦))
Assertion
Ref Expression
infleinf (𝜑 → inf(𝐴, ℝ*, < ) ≤ inf(𝐵, ℝ*, < ))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧

Proof of Theorem infleinf
Dummy variables 𝑟 𝑤 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 infleinf.a . . . . . 6 (𝜑𝐴 ⊆ ℝ*)
2 infxrcl 12103 . . . . . 6 (𝐴 ⊆ ℝ* → inf(𝐴, ℝ*, < ) ∈ ℝ*)
31, 2syl 17 . . . . 5 (𝜑 → inf(𝐴, ℝ*, < ) ∈ ℝ*)
4 pnfge 11908 . . . . 5 (inf(𝐴, ℝ*, < ) ∈ ℝ* → inf(𝐴, ℝ*, < ) ≤ +∞)
53, 4syl 17 . . . 4 (𝜑 → inf(𝐴, ℝ*, < ) ≤ +∞)
65adantr 481 . . 3 ((𝜑𝐵 = ∅) → inf(𝐴, ℝ*, < ) ≤ +∞)
7 infeq1 8327 . . . . . 6 (𝐵 = ∅ → inf(𝐵, ℝ*, < ) = inf(∅, ℝ*, < ))
8 xrinf0 12107 . . . . . . 7 inf(∅, ℝ*, < ) = +∞
98a1i 11 . . . . . 6 (𝐵 = ∅ → inf(∅, ℝ*, < ) = +∞)
107, 9eqtrd 2660 . . . . 5 (𝐵 = ∅ → inf(𝐵, ℝ*, < ) = +∞)
1110eqcomd 2632 . . . 4 (𝐵 = ∅ → +∞ = inf(𝐵, ℝ*, < ))
1211adantl 482 . . 3 ((𝜑𝐵 = ∅) → +∞ = inf(𝐵, ℝ*, < ))
136, 12breqtrd 4644 . 2 ((𝜑𝐵 = ∅) → inf(𝐴, ℝ*, < ) ≤ inf(𝐵, ℝ*, < ))
14 neqne 2804 . . . 4 𝐵 = ∅ → 𝐵 ≠ ∅)
1514adantl 482 . . 3 ((𝜑 ∧ ¬ 𝐵 = ∅) → 𝐵 ≠ ∅)
163adantr 481 . . . . . 6 ((𝜑 ∧ inf(𝐵, ℝ*, < ) = -∞) → inf(𝐴, ℝ*, < ) ∈ ℝ*)
17 id 22 . . . . . . . . . . . . 13 (𝑟 ∈ ℝ → 𝑟 ∈ ℝ)
18 2re 11035 . . . . . . . . . . . . . 14 2 ∈ ℝ
1918a1i 11 . . . . . . . . . . . . 13 (𝑟 ∈ ℝ → 2 ∈ ℝ)
2017, 19resubcld 10403 . . . . . . . . . . . 12 (𝑟 ∈ ℝ → (𝑟 − 2) ∈ ℝ)
2120adantl 482 . . . . . . . . . . 11 (((𝜑 ∧ inf(𝐵, ℝ*, < ) = -∞) ∧ 𝑟 ∈ ℝ) → (𝑟 − 2) ∈ ℝ)
22 simpr 477 . . . . . . . . . . . . 13 ((𝜑 ∧ inf(𝐵, ℝ*, < ) = -∞) → inf(𝐵, ℝ*, < ) = -∞)
23 infleinf.b . . . . . . . . . . . . . . 15 (𝜑𝐵 ⊆ ℝ*)
24 infxrunb2 39035 . . . . . . . . . . . . . . 15 (𝐵 ⊆ ℝ* → (∀𝑦 ∈ ℝ ∃𝑥𝐵 𝑥 < 𝑦 ↔ inf(𝐵, ℝ*, < ) = -∞))
2523, 24syl 17 . . . . . . . . . . . . . 14 (𝜑 → (∀𝑦 ∈ ℝ ∃𝑥𝐵 𝑥 < 𝑦 ↔ inf(𝐵, ℝ*, < ) = -∞))
2625adantr 481 . . . . . . . . . . . . 13 ((𝜑 ∧ inf(𝐵, ℝ*, < ) = -∞) → (∀𝑦 ∈ ℝ ∃𝑥𝐵 𝑥 < 𝑦 ↔ inf(𝐵, ℝ*, < ) = -∞))
2722, 26mpbird 247 . . . . . . . . . . . 12 ((𝜑 ∧ inf(𝐵, ℝ*, < ) = -∞) → ∀𝑦 ∈ ℝ ∃𝑥𝐵 𝑥 < 𝑦)
2827adantr 481 . . . . . . . . . . 11 (((𝜑 ∧ inf(𝐵, ℝ*, < ) = -∞) ∧ 𝑟 ∈ ℝ) → ∀𝑦 ∈ ℝ ∃𝑥𝐵 𝑥 < 𝑦)
29 breq2 4622 . . . . . . . . . . . . 13 (𝑦 = (𝑟 − 2) → (𝑥 < 𝑦𝑥 < (𝑟 − 2)))
3029rexbidv 3050 . . . . . . . . . . . 12 (𝑦 = (𝑟 − 2) → (∃𝑥𝐵 𝑥 < 𝑦 ↔ ∃𝑥𝐵 𝑥 < (𝑟 − 2)))
3130rspcva 3298 . . . . . . . . . . 11 (((𝑟 − 2) ∈ ℝ ∧ ∀𝑦 ∈ ℝ ∃𝑥𝐵 𝑥 < 𝑦) → ∃𝑥𝐵 𝑥 < (𝑟 − 2))
3221, 28, 31syl2anc 692 . . . . . . . . . 10 (((𝜑 ∧ inf(𝐵, ℝ*, < ) = -∞) ∧ 𝑟 ∈ ℝ) → ∃𝑥𝐵 𝑥 < (𝑟 − 2))
33 simpl 473 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐵) → 𝜑)
34 simpr 477 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐵) → 𝑥𝐵)
35 1rp 11780 . . . . . . . . . . . . . . . . . 18 1 ∈ ℝ+
3635a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐵) → 1 ∈ ℝ+)
37 1ex 9980 . . . . . . . . . . . . . . . . . 18 1 ∈ V
38 eleq1 2692 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 1 → (𝑦 ∈ ℝ+ ↔ 1 ∈ ℝ+))
39383anbi3d 1402 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 1 → ((𝜑𝑥𝐵𝑦 ∈ ℝ+) ↔ (𝜑𝑥𝐵 ∧ 1 ∈ ℝ+)))
40 oveq2 6613 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 1 → (𝑥 +𝑒 𝑦) = (𝑥 +𝑒 1))
4140breq2d 4630 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 1 → (𝑧 ≤ (𝑥 +𝑒 𝑦) ↔ 𝑧 ≤ (𝑥 +𝑒 1)))
4241rexbidv 3050 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 1 → (∃𝑧𝐴 𝑧 ≤ (𝑥 +𝑒 𝑦) ↔ ∃𝑧𝐴 𝑧 ≤ (𝑥 +𝑒 1)))
4339, 42imbi12d 334 . . . . . . . . . . . . . . . . . 18 (𝑦 = 1 → (((𝜑𝑥𝐵𝑦 ∈ ℝ+) → ∃𝑧𝐴 𝑧 ≤ (𝑥 +𝑒 𝑦)) ↔ ((𝜑𝑥𝐵 ∧ 1 ∈ ℝ+) → ∃𝑧𝐴 𝑧 ≤ (𝑥 +𝑒 1))))
44 infleinf.c . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐵𝑦 ∈ ℝ+) → ∃𝑧𝐴 𝑧 ≤ (𝑥 +𝑒 𝑦))
4537, 43, 44vtocl 3250 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐵 ∧ 1 ∈ ℝ+) → ∃𝑧𝐴 𝑧 ≤ (𝑥 +𝑒 1))
4633, 34, 36, 45syl3anc 1323 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐵) → ∃𝑧𝐴 𝑧 ≤ (𝑥 +𝑒 1))
4746adantlr 750 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ ℝ) ∧ 𝑥𝐵) → ∃𝑧𝐴 𝑧 ≤ (𝑥 +𝑒 1))
48473adant3 1079 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ℝ) ∧ 𝑥𝐵𝑥 < (𝑟 − 2)) → ∃𝑧𝐴 𝑧 ≤ (𝑥 +𝑒 1))
49 simp1l 1083 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑟 ∈ ℝ) ∧ 𝑥𝐵𝑥 < (𝑟 − 2)) → 𝜑)
5049ad2antrr 761 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑟 ∈ ℝ) ∧ 𝑥𝐵𝑥 < (𝑟 − 2)) ∧ 𝑧𝐴) ∧ 𝑧 ≤ (𝑥 +𝑒 1)) → 𝜑)
5150, 1syl 17 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑟 ∈ ℝ) ∧ 𝑥𝐵𝑥 < (𝑟 − 2)) ∧ 𝑧𝐴) ∧ 𝑧 ≤ (𝑥 +𝑒 1)) → 𝐴 ⊆ ℝ*)
5250, 23syl 17 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑟 ∈ ℝ) ∧ 𝑥𝐵𝑥 < (𝑟 − 2)) ∧ 𝑧𝐴) ∧ 𝑧 ≤ (𝑥 +𝑒 1)) → 𝐵 ⊆ ℝ*)
53 simp1r 1084 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑟 ∈ ℝ) ∧ 𝑥𝐵𝑥 < (𝑟 − 2)) → 𝑟 ∈ ℝ)
5453ad2antrr 761 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑟 ∈ ℝ) ∧ 𝑥𝐵𝑥 < (𝑟 − 2)) ∧ 𝑧𝐴) ∧ 𝑧 ≤ (𝑥 +𝑒 1)) → 𝑟 ∈ ℝ)
55 simp2 1060 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑟 ∈ ℝ) ∧ 𝑥𝐵𝑥 < (𝑟 − 2)) → 𝑥𝐵)
5655ad2antrr 761 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑟 ∈ ℝ) ∧ 𝑥𝐵𝑥 < (𝑟 − 2)) ∧ 𝑧𝐴) ∧ 𝑧 ≤ (𝑥 +𝑒 1)) → 𝑥𝐵)
57 simpll3 1100 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑟 ∈ ℝ) ∧ 𝑥𝐵𝑥 < (𝑟 − 2)) ∧ 𝑧𝐴) ∧ 𝑧 ≤ (𝑥 +𝑒 1)) → 𝑥 < (𝑟 − 2))
58 simplr 791 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑟 ∈ ℝ) ∧ 𝑥𝐵𝑥 < (𝑟 − 2)) ∧ 𝑧𝐴) ∧ 𝑧 ≤ (𝑥 +𝑒 1)) → 𝑧𝐴)
59 simpr 477 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑟 ∈ ℝ) ∧ 𝑥𝐵𝑥 < (𝑟 − 2)) ∧ 𝑧𝐴) ∧ 𝑧 ≤ (𝑥 +𝑒 1)) → 𝑧 ≤ (𝑥 +𝑒 1))
6051, 52, 54, 56, 57, 58, 59infleinflem2 39038 . . . . . . . . . . . . . . . 16 (((((𝜑𝑟 ∈ ℝ) ∧ 𝑥𝐵𝑥 < (𝑟 − 2)) ∧ 𝑧𝐴) ∧ 𝑧 ≤ (𝑥 +𝑒 1)) → 𝑧 < 𝑟)
6160ex 450 . . . . . . . . . . . . . . 15 ((((𝜑𝑟 ∈ ℝ) ∧ 𝑥𝐵𝑥 < (𝑟 − 2)) ∧ 𝑧𝐴) → (𝑧 ≤ (𝑥 +𝑒 1) → 𝑧 < 𝑟))
6261reximdva 3016 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ℝ) ∧ 𝑥𝐵𝑥 < (𝑟 − 2)) → (∃𝑧𝐴 𝑧 ≤ (𝑥 +𝑒 1) → ∃𝑧𝐴 𝑧 < 𝑟))
6348, 62mpd 15 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℝ) ∧ 𝑥𝐵𝑥 < (𝑟 − 2)) → ∃𝑧𝐴 𝑧 < 𝑟)
64633exp 1261 . . . . . . . . . . . 12 ((𝜑𝑟 ∈ ℝ) → (𝑥𝐵 → (𝑥 < (𝑟 − 2) → ∃𝑧𝐴 𝑧 < 𝑟)))
6564adantlr 750 . . . . . . . . . . 11 (((𝜑 ∧ inf(𝐵, ℝ*, < ) = -∞) ∧ 𝑟 ∈ ℝ) → (𝑥𝐵 → (𝑥 < (𝑟 − 2) → ∃𝑧𝐴 𝑧 < 𝑟)))
6665rexlimdv 3028 . . . . . . . . . 10 (((𝜑 ∧ inf(𝐵, ℝ*, < ) = -∞) ∧ 𝑟 ∈ ℝ) → (∃𝑥𝐵 𝑥 < (𝑟 − 2) → ∃𝑧𝐴 𝑧 < 𝑟))
6732, 66mpd 15 . . . . . . . . 9 (((𝜑 ∧ inf(𝐵, ℝ*, < ) = -∞) ∧ 𝑟 ∈ ℝ) → ∃𝑧𝐴 𝑧 < 𝑟)
6867ralrimiva 2965 . . . . . . . 8 ((𝜑 ∧ inf(𝐵, ℝ*, < ) = -∞) → ∀𝑟 ∈ ℝ ∃𝑧𝐴 𝑧 < 𝑟)
69 infxrunb2 39035 . . . . . . . . . 10 (𝐴 ⊆ ℝ* → (∀𝑟 ∈ ℝ ∃𝑧𝐴 𝑧 < 𝑟 ↔ inf(𝐴, ℝ*, < ) = -∞))
701, 69syl 17 . . . . . . . . 9 (𝜑 → (∀𝑟 ∈ ℝ ∃𝑧𝐴 𝑧 < 𝑟 ↔ inf(𝐴, ℝ*, < ) = -∞))
7170adantr 481 . . . . . . . 8 ((𝜑 ∧ inf(𝐵, ℝ*, < ) = -∞) → (∀𝑟 ∈ ℝ ∃𝑧𝐴 𝑧 < 𝑟 ↔ inf(𝐴, ℝ*, < ) = -∞))
7268, 71mpbid 222 . . . . . . 7 ((𝜑 ∧ inf(𝐵, ℝ*, < ) = -∞) → inf(𝐴, ℝ*, < ) = -∞)
7372, 22eqtr4d 2663 . . . . . 6 ((𝜑 ∧ inf(𝐵, ℝ*, < ) = -∞) → inf(𝐴, ℝ*, < ) = inf(𝐵, ℝ*, < ))
7416, 73xreqled 38997 . . . . 5 ((𝜑 ∧ inf(𝐵, ℝ*, < ) = -∞) → inf(𝐴, ℝ*, < ) ≤ inf(𝐵, ℝ*, < ))
7574adantlr 750 . . . 4 (((𝜑𝐵 ≠ ∅) ∧ inf(𝐵, ℝ*, < ) = -∞) → inf(𝐴, ℝ*, < ) ≤ inf(𝐵, ℝ*, < ))
76 mnfxr 10041 . . . . . . . 8 -∞ ∈ ℝ*
7776a1i 11 . . . . . . 7 (𝜑 → -∞ ∈ ℝ*)
7877ad2antrr 761 . . . . . 6 (((𝜑𝐵 ≠ ∅) ∧ ¬ inf(𝐵, ℝ*, < ) = -∞) → -∞ ∈ ℝ*)
79 infxrcl 12103 . . . . . . . 8 (𝐵 ⊆ ℝ* → inf(𝐵, ℝ*, < ) ∈ ℝ*)
8023, 79syl 17 . . . . . . 7 (𝜑 → inf(𝐵, ℝ*, < ) ∈ ℝ*)
8180ad2antrr 761 . . . . . 6 (((𝜑𝐵 ≠ ∅) ∧ ¬ inf(𝐵, ℝ*, < ) = -∞) → inf(𝐵, ℝ*, < ) ∈ ℝ*)
82 mnfle 11913 . . . . . . 7 (inf(𝐵, ℝ*, < ) ∈ ℝ* → -∞ ≤ inf(𝐵, ℝ*, < ))
8381, 82syl 17 . . . . . 6 (((𝜑𝐵 ≠ ∅) ∧ ¬ inf(𝐵, ℝ*, < ) = -∞) → -∞ ≤ inf(𝐵, ℝ*, < ))
84 neqne 2804 . . . . . . . 8 (¬ inf(𝐵, ℝ*, < ) = -∞ → inf(𝐵, ℝ*, < ) ≠ -∞)
8584necomd 2851 . . . . . . 7 (¬ inf(𝐵, ℝ*, < ) = -∞ → -∞ ≠ inf(𝐵, ℝ*, < ))
8685adantl 482 . . . . . 6 (((𝜑𝐵 ≠ ∅) ∧ ¬ inf(𝐵, ℝ*, < ) = -∞) → -∞ ≠ inf(𝐵, ℝ*, < ))
8778, 81, 83, 86xrleneltd 38990 . . . . 5 (((𝜑𝐵 ≠ ∅) ∧ ¬ inf(𝐵, ℝ*, < ) = -∞) → -∞ < inf(𝐵, ℝ*, < ))
883ad2antrr 761 . . . . . 6 (((𝜑𝐵 ≠ ∅) ∧ -∞ < inf(𝐵, ℝ*, < )) → inf(𝐴, ℝ*, < ) ∈ ℝ*)
8980ad2antrr 761 . . . . . 6 (((𝜑𝐵 ≠ ∅) ∧ -∞ < inf(𝐵, ℝ*, < )) → inf(𝐵, ℝ*, < ) ∈ ℝ*)
90 nfv 1845 . . . . . . . 8 𝑏(((𝜑𝐵 ≠ ∅) ∧ -∞ < inf(𝐵, ℝ*, < )) ∧ 𝑤 ∈ ℝ+)
9123ad3antrrr 765 . . . . . . . 8 ((((𝜑𝐵 ≠ ∅) ∧ -∞ < inf(𝐵, ℝ*, < )) ∧ 𝑤 ∈ ℝ+) → 𝐵 ⊆ ℝ*)
92 simpllr 798 . . . . . . . 8 ((((𝜑𝐵 ≠ ∅) ∧ -∞ < inf(𝐵, ℝ*, < )) ∧ 𝑤 ∈ ℝ+) → 𝐵 ≠ ∅)
93 simpr 477 . . . . . . . . . 10 ((𝜑 ∧ -∞ < inf(𝐵, ℝ*, < )) → -∞ < inf(𝐵, ℝ*, < ))
94 infxrbnd2 39036 . . . . . . . . . . . 12 (𝐵 ⊆ ℝ* → (∃𝑏 ∈ ℝ ∀𝑥𝐵 𝑏𝑥 ↔ -∞ < inf(𝐵, ℝ*, < )))
9523, 94syl 17 . . . . . . . . . . 11 (𝜑 → (∃𝑏 ∈ ℝ ∀𝑥𝐵 𝑏𝑥 ↔ -∞ < inf(𝐵, ℝ*, < )))
9695adantr 481 . . . . . . . . . 10 ((𝜑 ∧ -∞ < inf(𝐵, ℝ*, < )) → (∃𝑏 ∈ ℝ ∀𝑥𝐵 𝑏𝑥 ↔ -∞ < inf(𝐵, ℝ*, < )))
9793, 96mpbird 247 . . . . . . . . 9 ((𝜑 ∧ -∞ < inf(𝐵, ℝ*, < )) → ∃𝑏 ∈ ℝ ∀𝑥𝐵 𝑏𝑥)
9897ad4ant13 1289 . . . . . . . 8 ((((𝜑𝐵 ≠ ∅) ∧ -∞ < inf(𝐵, ℝ*, < )) ∧ 𝑤 ∈ ℝ+) → ∃𝑏 ∈ ℝ ∀𝑥𝐵 𝑏𝑥)
99 simpr 477 . . . . . . . . 9 ((((𝜑𝐵 ≠ ∅) ∧ -∞ < inf(𝐵, ℝ*, < )) ∧ 𝑤 ∈ ℝ+) → 𝑤 ∈ ℝ+)
10099rphalfcld 11828 . . . . . . . 8 ((((𝜑𝐵 ≠ ∅) ∧ -∞ < inf(𝐵, ℝ*, < )) ∧ 𝑤 ∈ ℝ+) → (𝑤 / 2) ∈ ℝ+)
10190, 91, 92, 98, 100infrpge 39018 . . . . . . 7 ((((𝜑𝐵 ≠ ∅) ∧ -∞ < inf(𝐵, ℝ*, < )) ∧ 𝑤 ∈ ℝ+) → ∃𝑥𝐵 𝑥 ≤ (inf(𝐵, ℝ*, < ) +𝑒 (𝑤 / 2)))
102 simpll 789 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ ℝ+) ∧ 𝑥𝐵) → 𝜑)
103 simpr 477 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ ℝ+) ∧ 𝑥𝐵) → 𝑥𝐵)
104 rphalfcl 11802 . . . . . . . . . . . . . 14 (𝑤 ∈ ℝ+ → (𝑤 / 2) ∈ ℝ+)
105104ad2antlr 762 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ ℝ+) ∧ 𝑥𝐵) → (𝑤 / 2) ∈ ℝ+)
106 ovex 6633 . . . . . . . . . . . . . 14 (𝑤 / 2) ∈ V
107 eleq1 2692 . . . . . . . . . . . . . . . 16 (𝑦 = (𝑤 / 2) → (𝑦 ∈ ℝ+ ↔ (𝑤 / 2) ∈ ℝ+))
1081073anbi3d 1402 . . . . . . . . . . . . . . 15 (𝑦 = (𝑤 / 2) → ((𝜑𝑥𝐵𝑦 ∈ ℝ+) ↔ (𝜑𝑥𝐵 ∧ (𝑤 / 2) ∈ ℝ+)))
109 oveq2 6613 . . . . . . . . . . . . . . . . 17 (𝑦 = (𝑤 / 2) → (𝑥 +𝑒 𝑦) = (𝑥 +𝑒 (𝑤 / 2)))
110109breq2d 4630 . . . . . . . . . . . . . . . 16 (𝑦 = (𝑤 / 2) → (𝑧 ≤ (𝑥 +𝑒 𝑦) ↔ 𝑧 ≤ (𝑥 +𝑒 (𝑤 / 2))))
111110rexbidv 3050 . . . . . . . . . . . . . . 15 (𝑦 = (𝑤 / 2) → (∃𝑧𝐴 𝑧 ≤ (𝑥 +𝑒 𝑦) ↔ ∃𝑧𝐴 𝑧 ≤ (𝑥 +𝑒 (𝑤 / 2))))
112108, 111imbi12d 334 . . . . . . . . . . . . . 14 (𝑦 = (𝑤 / 2) → (((𝜑𝑥𝐵𝑦 ∈ ℝ+) → ∃𝑧𝐴 𝑧 ≤ (𝑥 +𝑒 𝑦)) ↔ ((𝜑𝑥𝐵 ∧ (𝑤 / 2) ∈ ℝ+) → ∃𝑧𝐴 𝑧 ≤ (𝑥 +𝑒 (𝑤 / 2)))))
113106, 112, 44vtocl 3250 . . . . . . . . . . . . 13 ((𝜑𝑥𝐵 ∧ (𝑤 / 2) ∈ ℝ+) → ∃𝑧𝐴 𝑧 ≤ (𝑥 +𝑒 (𝑤 / 2)))
114102, 103, 105, 113syl3anc 1323 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ ℝ+) ∧ 𝑥𝐵) → ∃𝑧𝐴 𝑧 ≤ (𝑥 +𝑒 (𝑤 / 2)))
1151143adant3 1079 . . . . . . . . . . 11 (((𝜑𝑤 ∈ ℝ+) ∧ 𝑥𝐵𝑥 ≤ (inf(𝐵, ℝ*, < ) +𝑒 (𝑤 / 2))) → ∃𝑧𝐴 𝑧 ≤ (𝑥 +𝑒 (𝑤 / 2)))
116 simp11l 1170 . . . . . . . . . . . . . . 15 ((((𝜑𝑤 ∈ ℝ+) ∧ 𝑥𝐵𝑥 ≤ (inf(𝐵, ℝ*, < ) +𝑒 (𝑤 / 2))) ∧ 𝑧𝐴𝑧 ≤ (𝑥 +𝑒 (𝑤 / 2))) → 𝜑)
117116, 1syl 17 . . . . . . . . . . . . . 14 ((((𝜑𝑤 ∈ ℝ+) ∧ 𝑥𝐵𝑥 ≤ (inf(𝐵, ℝ*, < ) +𝑒 (𝑤 / 2))) ∧ 𝑧𝐴𝑧 ≤ (𝑥 +𝑒 (𝑤 / 2))) → 𝐴 ⊆ ℝ*)
118116, 23syl 17 . . . . . . . . . . . . . 14 ((((𝜑𝑤 ∈ ℝ+) ∧ 𝑥𝐵𝑥 ≤ (inf(𝐵, ℝ*, < ) +𝑒 (𝑤 / 2))) ∧ 𝑧𝐴𝑧 ≤ (𝑥 +𝑒 (𝑤 / 2))) → 𝐵 ⊆ ℝ*)
119 simp11 1089 . . . . . . . . . . . . . . 15 ((((𝜑𝑤 ∈ ℝ+) ∧ 𝑥𝐵𝑥 ≤ (inf(𝐵, ℝ*, < ) +𝑒 (𝑤 / 2))) ∧ 𝑧𝐴𝑧 ≤ (𝑥 +𝑒 (𝑤 / 2))) → (𝜑𝑤 ∈ ℝ+))
120119simprd 479 . . . . . . . . . . . . . 14 ((((𝜑𝑤 ∈ ℝ+) ∧ 𝑥𝐵𝑥 ≤ (inf(𝐵, ℝ*, < ) +𝑒 (𝑤 / 2))) ∧ 𝑧𝐴𝑧 ≤ (𝑥 +𝑒 (𝑤 / 2))) → 𝑤 ∈ ℝ+)
121 simp12 1090 . . . . . . . . . . . . . 14 ((((𝜑𝑤 ∈ ℝ+) ∧ 𝑥𝐵𝑥 ≤ (inf(𝐵, ℝ*, < ) +𝑒 (𝑤 / 2))) ∧ 𝑧𝐴𝑧 ≤ (𝑥 +𝑒 (𝑤 / 2))) → 𝑥𝐵)
122 simp3 1061 . . . . . . . . . . . . . . 15 (((𝜑𝑤 ∈ ℝ+) ∧ 𝑥𝐵𝑥 ≤ (inf(𝐵, ℝ*, < ) +𝑒 (𝑤 / 2))) → 𝑥 ≤ (inf(𝐵, ℝ*, < ) +𝑒 (𝑤 / 2)))
1231223ad2ant1 1080 . . . . . . . . . . . . . 14 ((((𝜑𝑤 ∈ ℝ+) ∧ 𝑥𝐵𝑥 ≤ (inf(𝐵, ℝ*, < ) +𝑒 (𝑤 / 2))) ∧ 𝑧𝐴𝑧 ≤ (𝑥 +𝑒 (𝑤 / 2))) → 𝑥 ≤ (inf(𝐵, ℝ*, < ) +𝑒 (𝑤 / 2)))
124 simp2 1060 . . . . . . . . . . . . . 14 ((((𝜑𝑤 ∈ ℝ+) ∧ 𝑥𝐵𝑥 ≤ (inf(𝐵, ℝ*, < ) +𝑒 (𝑤 / 2))) ∧ 𝑧𝐴𝑧 ≤ (𝑥 +𝑒 (𝑤 / 2))) → 𝑧𝐴)
125 simp3 1061 . . . . . . . . . . . . . 14 ((((𝜑𝑤 ∈ ℝ+) ∧ 𝑥𝐵𝑥 ≤ (inf(𝐵, ℝ*, < ) +𝑒 (𝑤 / 2))) ∧ 𝑧𝐴𝑧 ≤ (𝑥 +𝑒 (𝑤 / 2))) → 𝑧 ≤ (𝑥 +𝑒 (𝑤 / 2)))
126117, 118, 120, 121, 123, 124, 125infleinflem1 39037 . . . . . . . . . . . . 13 ((((𝜑𝑤 ∈ ℝ+) ∧ 𝑥𝐵𝑥 ≤ (inf(𝐵, ℝ*, < ) +𝑒 (𝑤 / 2))) ∧ 𝑧𝐴𝑧 ≤ (𝑥 +𝑒 (𝑤 / 2))) → inf(𝐴, ℝ*, < ) ≤ (inf(𝐵, ℝ*, < ) +𝑒 𝑤))
1271263exp 1261 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ ℝ+) ∧ 𝑥𝐵𝑥 ≤ (inf(𝐵, ℝ*, < ) +𝑒 (𝑤 / 2))) → (𝑧𝐴 → (𝑧 ≤ (𝑥 +𝑒 (𝑤 / 2)) → inf(𝐴, ℝ*, < ) ≤ (inf(𝐵, ℝ*, < ) +𝑒 𝑤))))
128127rexlimdv 3028 . . . . . . . . . . 11 (((𝜑𝑤 ∈ ℝ+) ∧ 𝑥𝐵𝑥 ≤ (inf(𝐵, ℝ*, < ) +𝑒 (𝑤 / 2))) → (∃𝑧𝐴 𝑧 ≤ (𝑥 +𝑒 (𝑤 / 2)) → inf(𝐴, ℝ*, < ) ≤ (inf(𝐵, ℝ*, < ) +𝑒 𝑤)))
129115, 128mpd 15 . . . . . . . . . 10 (((𝜑𝑤 ∈ ℝ+) ∧ 𝑥𝐵𝑥 ≤ (inf(𝐵, ℝ*, < ) +𝑒 (𝑤 / 2))) → inf(𝐴, ℝ*, < ) ≤ (inf(𝐵, ℝ*, < ) +𝑒 𝑤))
1301293exp 1261 . . . . . . . . 9 ((𝜑𝑤 ∈ ℝ+) → (𝑥𝐵 → (𝑥 ≤ (inf(𝐵, ℝ*, < ) +𝑒 (𝑤 / 2)) → inf(𝐴, ℝ*, < ) ≤ (inf(𝐵, ℝ*, < ) +𝑒 𝑤))))
131130rexlimdv 3028 . . . . . . . 8 ((𝜑𝑤 ∈ ℝ+) → (∃𝑥𝐵 𝑥 ≤ (inf(𝐵, ℝ*, < ) +𝑒 (𝑤 / 2)) → inf(𝐴, ℝ*, < ) ≤ (inf(𝐵, ℝ*, < ) +𝑒 𝑤)))
132131ad4ant14 1290 . . . . . . 7 ((((𝜑𝐵 ≠ ∅) ∧ -∞ < inf(𝐵, ℝ*, < )) ∧ 𝑤 ∈ ℝ+) → (∃𝑥𝐵 𝑥 ≤ (inf(𝐵, ℝ*, < ) +𝑒 (𝑤 / 2)) → inf(𝐴, ℝ*, < ) ≤ (inf(𝐵, ℝ*, < ) +𝑒 𝑤)))
133101, 132mpd 15 . . . . . 6 ((((𝜑𝐵 ≠ ∅) ∧ -∞ < inf(𝐵, ℝ*, < )) ∧ 𝑤 ∈ ℝ+) → inf(𝐴, ℝ*, < ) ≤ (inf(𝐵, ℝ*, < ) +𝑒 𝑤))
13488, 89, 133xrlexaddrp 39019 . . . . 5 (((𝜑𝐵 ≠ ∅) ∧ -∞ < inf(𝐵, ℝ*, < )) → inf(𝐴, ℝ*, < ) ≤ inf(𝐵, ℝ*, < ))
13587, 134syldan 487 . . . 4 (((𝜑𝐵 ≠ ∅) ∧ ¬ inf(𝐵, ℝ*, < ) = -∞) → inf(𝐴, ℝ*, < ) ≤ inf(𝐵, ℝ*, < ))
13675, 135pm2.61dan 831 . . 3 ((𝜑𝐵 ≠ ∅) → inf(𝐴, ℝ*, < ) ≤ inf(𝐵, ℝ*, < ))
13715, 136syldan 487 . 2 ((𝜑 ∧ ¬ 𝐵 = ∅) → inf(𝐴, ℝ*, < ) ≤ inf(𝐵, ℝ*, < ))
13813, 137pm2.61dan 831 1 (𝜑 → inf(𝐴, ℝ*, < ) ≤ inf(𝐵, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1992  wne 2796  wral 2912  wrex 2913  wss 3560  c0 3896   class class class wbr 4618  (class class class)co 6605  infcinf 8292  cr 9880  1c1 9882  +∞cpnf 10016  -∞cmnf 10017  *cxr 10018   < clt 10019  cle 10020  cmin 10211   / cdiv 10629  2c2 11015  +crp 11776   +𝑒 cxad 11888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-cnex 9937  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-mulcom 9945  ax-addass 9946  ax-mulass 9947  ax-distr 9948  ax-i2m1 9949  ax-1ne0 9950  ax-1rid 9951  ax-rnegex 9952  ax-rrecex 9953  ax-cnre 9954  ax-pre-lttri 9955  ax-pre-lttrn 9956  ax-pre-ltadd 9957  ax-pre-mulgt0 9958  ax-pre-sup 9959
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-om 7014  df-1st 7116  df-2nd 7117  df-wrecs 7353  df-recs 7414  df-rdg 7452  df-er 7688  df-en 7901  df-dom 7902  df-sdom 7903  df-sup 8293  df-inf 8294  df-pnf 10021  df-mnf 10022  df-xr 10023  df-ltxr 10024  df-le 10025  df-sub 10213  df-neg 10214  df-div 10630  df-nn 10966  df-2 11024  df-n0 11238  df-z 11323  df-uz 11632  df-q 11733  df-rp 11777  df-xneg 11890  df-xadd 11891
This theorem is referenced by:  ovolval5lem3  40162
  Copyright terms: Public domain W3C validator