Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrlexaddrp Structured version   Visualization version   GIF version

Theorem xrlexaddrp 40066
Description: If an extended real number 𝐴 can be approximated from above, adding positive reals to 𝐵, then 𝐴 is smaller or equal than 𝐵. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypotheses
Ref Expression
xrlexaddrp.1 (𝜑𝐴 ∈ ℝ*)
xrlexaddrp.2 (𝜑𝐵 ∈ ℝ*)
xrlexaddrp.3 ((𝜑𝑥 ∈ ℝ+) → 𝐴 ≤ (𝐵 +𝑒 𝑥))
Assertion
Ref Expression
xrlexaddrp (𝜑𝐴𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥

Proof of Theorem xrlexaddrp
StepHypRef Expression
1 xrlexaddrp.1 . . . . 5 (𝜑𝐴 ∈ ℝ*)
2 pnfge 12157 . . . . 5 (𝐴 ∈ ℝ*𝐴 ≤ +∞)
31, 2syl 17 . . . 4 (𝜑𝐴 ≤ +∞)
43adantr 472 . . 3 ((𝜑𝐵 = +∞) → 𝐴 ≤ +∞)
5 id 22 . . . . 5 (𝐵 = +∞ → 𝐵 = +∞)
65eqcomd 2766 . . . 4 (𝐵 = +∞ → +∞ = 𝐵)
76adantl 473 . . 3 ((𝜑𝐵 = +∞) → +∞ = 𝐵)
84, 7breqtrd 4830 . 2 ((𝜑𝐵 = +∞) → 𝐴𝐵)
9 simpl 474 . . 3 ((𝜑 ∧ ¬ 𝐵 = +∞) → 𝜑)
10 neqne 2940 . . . 4 𝐵 = +∞ → 𝐵 ≠ +∞)
1110adantl 473 . . 3 ((𝜑 ∧ ¬ 𝐵 = +∞) → 𝐵 ≠ +∞)
12 simpr 479 . . . . . 6 ((𝜑𝐴 = -∞) → 𝐴 = -∞)
13 xrlexaddrp.2 . . . . . . . 8 (𝜑𝐵 ∈ ℝ*)
14 mnfle 12162 . . . . . . . 8 (𝐵 ∈ ℝ* → -∞ ≤ 𝐵)
1513, 14syl 17 . . . . . . 7 (𝜑 → -∞ ≤ 𝐵)
1615adantr 472 . . . . . 6 ((𝜑𝐴 = -∞) → -∞ ≤ 𝐵)
1712, 16eqbrtrd 4826 . . . . 5 ((𝜑𝐴 = -∞) → 𝐴𝐵)
1817adantlr 753 . . . 4 (((𝜑𝐵 ≠ +∞) ∧ 𝐴 = -∞) → 𝐴𝐵)
19 simpl 474 . . . . 5 (((𝜑𝐵 ≠ +∞) ∧ ¬ 𝐴 = -∞) → (𝜑𝐵 ≠ +∞))
20 neqne 2940 . . . . . 6 𝐴 = -∞ → 𝐴 ≠ -∞)
2120adantl 473 . . . . 5 (((𝜑𝐵 ≠ +∞) ∧ ¬ 𝐴 = -∞) → 𝐴 ≠ -∞)
22 simpll 807 . . . . . 6 (((𝜑𝐵 ≠ +∞) ∧ 𝐴 ≠ -∞) → 𝜑)
2313adantr 472 . . . . . . . . . . . 12 ((𝜑𝐵 ≠ +∞) → 𝐵 ∈ ℝ*)
24 simpr 479 . . . . . . . . . . . 12 ((𝜑𝐵 ≠ +∞) → 𝐵 ≠ +∞)
2523, 24jca 555 . . . . . . . . . . 11 ((𝜑𝐵 ≠ +∞) → (𝐵 ∈ ℝ*𝐵 ≠ +∞))
26 xrnepnf 12145 . . . . . . . . . . 11 ((𝐵 ∈ ℝ*𝐵 ≠ +∞) ↔ (𝐵 ∈ ℝ ∨ 𝐵 = -∞))
2725, 26sylib 208 . . . . . . . . . 10 ((𝜑𝐵 ≠ +∞) → (𝐵 ∈ ℝ ∨ 𝐵 = -∞))
2827adantr 472 . . . . . . . . 9 (((𝜑𝐵 ≠ +∞) ∧ ¬ 𝐵 ∈ ℝ) → (𝐵 ∈ ℝ ∨ 𝐵 = -∞))
29 simpr 479 . . . . . . . . 9 (((𝜑𝐵 ≠ +∞) ∧ ¬ 𝐵 ∈ ℝ) → ¬ 𝐵 ∈ ℝ)
30 pm2.53 387 . . . . . . . . 9 ((𝐵 ∈ ℝ ∨ 𝐵 = -∞) → (¬ 𝐵 ∈ ℝ → 𝐵 = -∞))
3128, 29, 30sylc 65 . . . . . . . 8 (((𝜑𝐵 ≠ +∞) ∧ ¬ 𝐵 ∈ ℝ) → 𝐵 = -∞)
3231adantlr 753 . . . . . . 7 ((((𝜑𝐵 ≠ +∞) ∧ 𝐴 ≠ -∞) ∧ ¬ 𝐵 ∈ ℝ) → 𝐵 = -∞)
33 id 22 . . . . . . . . . . . . 13 (𝜑𝜑)
34 1rp 12029 . . . . . . . . . . . . . 14 1 ∈ ℝ+
3534a1i 11 . . . . . . . . . . . . 13 (𝜑 → 1 ∈ ℝ+)
36 1re 10231 . . . . . . . . . . . . . . 15 1 ∈ ℝ
3736elexi 3353 . . . . . . . . . . . . . 14 1 ∈ V
38 eleq1 2827 . . . . . . . . . . . . . . . 16 (𝑥 = 1 → (𝑥 ∈ ℝ+ ↔ 1 ∈ ℝ+))
3938anbi2d 742 . . . . . . . . . . . . . . 15 (𝑥 = 1 → ((𝜑𝑥 ∈ ℝ+) ↔ (𝜑 ∧ 1 ∈ ℝ+)))
40 oveq2 6821 . . . . . . . . . . . . . . . 16 (𝑥 = 1 → (𝐵 +𝑒 𝑥) = (𝐵 +𝑒 1))
4140breq2d 4816 . . . . . . . . . . . . . . 15 (𝑥 = 1 → (𝐴 ≤ (𝐵 +𝑒 𝑥) ↔ 𝐴 ≤ (𝐵 +𝑒 1)))
4239, 41imbi12d 333 . . . . . . . . . . . . . 14 (𝑥 = 1 → (((𝜑𝑥 ∈ ℝ+) → 𝐴 ≤ (𝐵 +𝑒 𝑥)) ↔ ((𝜑 ∧ 1 ∈ ℝ+) → 𝐴 ≤ (𝐵 +𝑒 1))))
43 xrlexaddrp.3 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ+) → 𝐴 ≤ (𝐵 +𝑒 𝑥))
4437, 42, 43vtocl 3399 . . . . . . . . . . . . 13 ((𝜑 ∧ 1 ∈ ℝ+) → 𝐴 ≤ (𝐵 +𝑒 1))
4533, 35, 44syl2anc 696 . . . . . . . . . . . 12 (𝜑𝐴 ≤ (𝐵 +𝑒 1))
4645ad2antrr 764 . . . . . . . . . . 11 (((𝜑𝐴 ≠ -∞) ∧ 𝐵 = -∞) → 𝐴 ≤ (𝐵 +𝑒 1))
47 oveq1 6820 . . . . . . . . . . . . . . . 16 (𝐵 = -∞ → (𝐵 +𝑒 1) = (-∞ +𝑒 1))
4836rexri 10289 . . . . . . . . . . . . . . . . . 18 1 ∈ ℝ*
49 ltpnf 12147 . . . . . . . . . . . . . . . . . . . 20 (1 ∈ ℝ → 1 < +∞)
5036, 49ax-mp 5 . . . . . . . . . . . . . . . . . . 19 1 < +∞
5136, 50ltneii 10342 . . . . . . . . . . . . . . . . . 18 1 ≠ +∞
52 xaddmnf2 12253 . . . . . . . . . . . . . . . . . 18 ((1 ∈ ℝ* ∧ 1 ≠ +∞) → (-∞ +𝑒 1) = -∞)
5348, 51, 52mp2an 710 . . . . . . . . . . . . . . . . 17 (-∞ +𝑒 1) = -∞
5453a1i 11 . . . . . . . . . . . . . . . 16 (𝐵 = -∞ → (-∞ +𝑒 1) = -∞)
5547, 54eqtr2d 2795 . . . . . . . . . . . . . . 15 (𝐵 = -∞ → -∞ = (𝐵 +𝑒 1))
5655adantl 473 . . . . . . . . . . . . . 14 (((𝜑𝐴 ≠ -∞) ∧ 𝐵 = -∞) → -∞ = (𝐵 +𝑒 1))
5756eqcomd 2766 . . . . . . . . . . . . 13 (((𝜑𝐴 ≠ -∞) ∧ 𝐵 = -∞) → (𝐵 +𝑒 1) = -∞)
581adantr 472 . . . . . . . . . . . . . . 15 ((𝜑𝐴 ≠ -∞) → 𝐴 ∈ ℝ*)
59 simpr 479 . . . . . . . . . . . . . . 15 ((𝜑𝐴 ≠ -∞) → 𝐴 ≠ -∞)
60 nemnftgtmnft 40058 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ*𝐴 ≠ -∞) → -∞ < 𝐴)
6158, 59, 60syl2anc 696 . . . . . . . . . . . . . 14 ((𝜑𝐴 ≠ -∞) → -∞ < 𝐴)
6261adantr 472 . . . . . . . . . . . . 13 (((𝜑𝐴 ≠ -∞) ∧ 𝐵 = -∞) → -∞ < 𝐴)
6357, 62eqbrtrd 4826 . . . . . . . . . . . 12 (((𝜑𝐴 ≠ -∞) ∧ 𝐵 = -∞) → (𝐵 +𝑒 1) < 𝐴)
6413ad2antrr 764 . . . . . . . . . . . . . 14 (((𝜑𝐴 ≠ -∞) ∧ 𝐵 = -∞) → 𝐵 ∈ ℝ*)
6548a1i 11 . . . . . . . . . . . . . 14 (((𝜑𝐴 ≠ -∞) ∧ 𝐵 = -∞) → 1 ∈ ℝ*)
6664, 65xaddcld 12324 . . . . . . . . . . . . 13 (((𝜑𝐴 ≠ -∞) ∧ 𝐵 = -∞) → (𝐵 +𝑒 1) ∈ ℝ*)
671ad2antrr 764 . . . . . . . . . . . . 13 (((𝜑𝐴 ≠ -∞) ∧ 𝐵 = -∞) → 𝐴 ∈ ℝ*)
68 xrltnle 10297 . . . . . . . . . . . . 13 (((𝐵 +𝑒 1) ∈ ℝ*𝐴 ∈ ℝ*) → ((𝐵 +𝑒 1) < 𝐴 ↔ ¬ 𝐴 ≤ (𝐵 +𝑒 1)))
6966, 67, 68syl2anc 696 . . . . . . . . . . . 12 (((𝜑𝐴 ≠ -∞) ∧ 𝐵 = -∞) → ((𝐵 +𝑒 1) < 𝐴 ↔ ¬ 𝐴 ≤ (𝐵 +𝑒 1)))
7063, 69mpbid 222 . . . . . . . . . . 11 (((𝜑𝐴 ≠ -∞) ∧ 𝐵 = -∞) → ¬ 𝐴 ≤ (𝐵 +𝑒 1))
7146, 70pm2.65da 601 . . . . . . . . . 10 ((𝜑𝐴 ≠ -∞) → ¬ 𝐵 = -∞)
7271neqned 2939 . . . . . . . . 9 ((𝜑𝐴 ≠ -∞) → 𝐵 ≠ -∞)
7372ad4ant13 1207 . . . . . . . 8 ((((𝜑𝐵 ≠ +∞) ∧ 𝐴 ≠ -∞) ∧ ¬ 𝐵 ∈ ℝ) → 𝐵 ≠ -∞)
7473neneqd 2937 . . . . . . 7 ((((𝜑𝐵 ≠ +∞) ∧ 𝐴 ≠ -∞) ∧ ¬ 𝐵 ∈ ℝ) → ¬ 𝐵 = -∞)
7532, 74condan 870 . . . . . 6 (((𝜑𝐵 ≠ +∞) ∧ 𝐴 ≠ -∞) → 𝐵 ∈ ℝ)
7643adantlr 753 . . . . . . . . 9 (((𝜑𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → 𝐴 ≤ (𝐵 +𝑒 𝑥))
77 simpl 474 . . . . . . . . . . 11 ((𝐵 ∈ ℝ ∧ 𝑥 ∈ ℝ+) → 𝐵 ∈ ℝ)
78 rpre 12032 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
7978adantl 473 . . . . . . . . . . 11 ((𝐵 ∈ ℝ ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ)
80 rexadd 12256 . . . . . . . . . . 11 ((𝐵 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝐵 +𝑒 𝑥) = (𝐵 + 𝑥))
8177, 79, 80syl2anc 696 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ 𝑥 ∈ ℝ+) → (𝐵 +𝑒 𝑥) = (𝐵 + 𝑥))
8281adantll 752 . . . . . . . . 9 (((𝜑𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → (𝐵 +𝑒 𝑥) = (𝐵 + 𝑥))
8376, 82breqtrd 4830 . . . . . . . 8 (((𝜑𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → 𝐴 ≤ (𝐵 + 𝑥))
8483ralrimiva 3104 . . . . . . 7 ((𝜑𝐵 ∈ ℝ) → ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑥))
851adantr 472 . . . . . . . 8 ((𝜑𝐵 ∈ ℝ) → 𝐴 ∈ ℝ*)
86 simpr 479 . . . . . . . 8 ((𝜑𝐵 ∈ ℝ) → 𝐵 ∈ ℝ)
87 xralrple 12229 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐴𝐵 ↔ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑥)))
8885, 86, 87syl2anc 696 . . . . . . 7 ((𝜑𝐵 ∈ ℝ) → (𝐴𝐵 ↔ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑥)))
8984, 88mpbird 247 . . . . . 6 ((𝜑𝐵 ∈ ℝ) → 𝐴𝐵)
9022, 75, 89syl2anc 696 . . . . 5 (((𝜑𝐵 ≠ +∞) ∧ 𝐴 ≠ -∞) → 𝐴𝐵)
9119, 21, 90syl2anc 696 . . . 4 (((𝜑𝐵 ≠ +∞) ∧ ¬ 𝐴 = -∞) → 𝐴𝐵)
9218, 91pm2.61dan 867 . . 3 ((𝜑𝐵 ≠ +∞) → 𝐴𝐵)
939, 11, 92syl2anc 696 . 2 ((𝜑 ∧ ¬ 𝐵 = +∞) → 𝐴𝐵)
948, 93pm2.61dan 867 1 (𝜑𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 382  wa 383   = wceq 1632  wcel 2139  wne 2932  wral 3050   class class class wbr 4804  (class class class)co 6813  cr 10127  1c1 10129   + caddc 10131  +∞cpnf 10263  -∞cmnf 10264  *cxr 10265   < clt 10266  cle 10267  +crp 12025   +𝑒 cxad 12137
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-pre-sup 10206
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-sup 8513  df-inf 8514  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-n0 11485  df-z 11570  df-uz 11880  df-q 11982  df-rp 12026  df-xadd 12140
This theorem is referenced by:  infleinf  40086  sge0xaddlem2  41154  ovnsubadd  41292
  Copyright terms: Public domain W3C validator