Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovolval5lem3 Structured version   Visualization version   GIF version

Theorem ovolval5lem3 42985
Description: The value of the Lebesgue outer measure for subsets of the reals, using covers of left-closed right-open intervals are used, instead of open intervals. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
ovolval5lem3.m 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ([,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))}
ovolval5lem3.q 𝑄 = {𝑧 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))}
Assertion
Ref Expression
ovolval5lem3 inf(𝑄, ℝ*, < ) = inf(𝑀, ℝ*, < )
Distinct variable groups:   𝐴,𝑓,𝑧,𝑦   𝑦,𝑀,𝑧   𝑄,𝑓,𝑦,𝑧
Allowed substitution hint:   𝑀(𝑓)

Proof of Theorem ovolval5lem3
Dummy variables 𝑔 𝑛 𝑤 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovolval5lem3.q . . . . 5 𝑄 = {𝑧 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))}
2 ssrab2 4056 . . . . 5 {𝑧 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))} ⊆ ℝ*
31, 2eqsstri 4001 . . . 4 𝑄 ⊆ ℝ*
4 infxrcl 12727 . . . 4 (𝑄 ⊆ ℝ* → inf(𝑄, ℝ*, < ) ∈ ℝ*)
53, 4mp1i 13 . . 3 (⊤ → inf(𝑄, ℝ*, < ) ∈ ℝ*)
6 ovolval5lem3.m . . . . 5 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ([,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))}
7 ssrab2 4056 . . . . 5 {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ([,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))} ⊆ ℝ*
86, 7eqsstri 4001 . . . 4 𝑀 ⊆ ℝ*
9 infxrcl 12727 . . . 4 (𝑀 ⊆ ℝ* → inf(𝑀, ℝ*, < ) ∈ ℝ*)
108, 9mp1i 13 . . 3 (⊤ → inf(𝑀, ℝ*, < ) ∈ ℝ*)
113a1i 11 . . . 4 (⊤ → 𝑄 ⊆ ℝ*)
128a1i 11 . . . 4 (⊤ → 𝑀 ⊆ ℝ*)
13 simpr 487 . . . . . 6 ((𝑦𝑀𝑤 ∈ ℝ+) → 𝑤 ∈ ℝ+)
146rabeq2i 3487 . . . . . . . . 9 (𝑦𝑀 ↔ (𝑦 ∈ ℝ* ∧ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ([,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))))
1514biimpi 218 . . . . . . . 8 (𝑦𝑀 → (𝑦 ∈ ℝ* ∧ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ([,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))))
1615simprd 498 . . . . . . 7 (𝑦𝑀 → ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ([,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ [,)) ∘ 𝑓))))
1716adantr 483 . . . . . 6 ((𝑦𝑀𝑤 ∈ ℝ+) → ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ([,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ [,)) ∘ 𝑓))))
18 coeq2 5729 . . . . . . . . . . . . . . . . 17 (𝑔 = 𝑓 → ((,) ∘ 𝑔) = ((,) ∘ 𝑓))
1918rneqd 5808 . . . . . . . . . . . . . . . 16 (𝑔 = 𝑓 → ran ((,) ∘ 𝑔) = ran ((,) ∘ 𝑓))
2019unieqd 4852 . . . . . . . . . . . . . . 15 (𝑔 = 𝑓 ran ((,) ∘ 𝑔) = ran ((,) ∘ 𝑓))
2120sseq2d 3999 . . . . . . . . . . . . . 14 (𝑔 = 𝑓 → (𝐴 ran ((,) ∘ 𝑔) ↔ 𝐴 ran ((,) ∘ 𝑓)))
22 coeq2 5729 . . . . . . . . . . . . . . . 16 (𝑔 = 𝑓 → ((vol ∘ (,)) ∘ 𝑔) = ((vol ∘ (,)) ∘ 𝑓))
2322fveq2d 6674 . . . . . . . . . . . . . . 15 (𝑔 = 𝑓 → (Σ^‘((vol ∘ (,)) ∘ 𝑔)) = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))
2423eqeq2d 2832 . . . . . . . . . . . . . 14 (𝑔 = 𝑓 → (𝑧 = (Σ^‘((vol ∘ (,)) ∘ 𝑔)) ↔ 𝑧 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))))
2521, 24anbi12d 632 . . . . . . . . . . . . 13 (𝑔 = 𝑓 → ((𝐴 ran ((,) ∘ 𝑔) ∧ 𝑧 = (Σ^‘((vol ∘ (,)) ∘ 𝑔))) ↔ (𝐴 ran ((,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))))
2625cbvrexvw 3450 . . . . . . . . . . . 12 (∃𝑔 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑧 = (Σ^‘((vol ∘ (,)) ∘ 𝑔))) ↔ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))))
2726rabbii 3473 . . . . . . . . . . 11 {𝑧 ∈ ℝ* ∣ ∃𝑔 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑧 = (Σ^‘((vol ∘ (,)) ∘ 𝑔)))} = {𝑧 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))}
281, 27eqtr4i 2847 . . . . . . . . . 10 𝑄 = {𝑧 ∈ ℝ* ∣ ∃𝑔 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑧 = (Σ^‘((vol ∘ (,)) ∘ 𝑔)))}
29 simp3r 1198 . . . . . . . . . 10 ((𝑤 ∈ ℝ+𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ (𝐴 ran ([,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))) → 𝑦 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))
30 eqid 2821 . . . . . . . . . 10 ^‘((vol ∘ (,)) ∘ (𝑚 ∈ ℕ ↦ ⟨((1st ‘(𝑓𝑚)) − (𝑤 / (2↑𝑚))), (2nd ‘(𝑓𝑚))⟩))) = (Σ^‘((vol ∘ (,)) ∘ (𝑚 ∈ ℕ ↦ ⟨((1st ‘(𝑓𝑚)) − (𝑤 / (2↑𝑚))), (2nd ‘(𝑓𝑚))⟩)))
31 elmapi 8428 . . . . . . . . . . 11 (𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) → 𝑓:ℕ⟶(ℝ × ℝ))
32313ad2ant2 1130 . . . . . . . . . 10 ((𝑤 ∈ ℝ+𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ (𝐴 ran ([,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))) → 𝑓:ℕ⟶(ℝ × ℝ))
33 simp3l 1197 . . . . . . . . . 10 ((𝑤 ∈ ℝ+𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ (𝐴 ran ([,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))) → 𝐴 ran ([,) ∘ 𝑓))
34 simp1 1132 . . . . . . . . . 10 ((𝑤 ∈ ℝ+𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ (𝐴 ran ([,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))) → 𝑤 ∈ ℝ+)
35 2fveq3 6675 . . . . . . . . . . . . 13 (𝑚 = 𝑛 → (1st ‘(𝑓𝑚)) = (1st ‘(𝑓𝑛)))
36 oveq2 7164 . . . . . . . . . . . . . 14 (𝑚 = 𝑛 → (2↑𝑚) = (2↑𝑛))
3736oveq2d 7172 . . . . . . . . . . . . 13 (𝑚 = 𝑛 → (𝑤 / (2↑𝑚)) = (𝑤 / (2↑𝑛)))
3835, 37oveq12d 7174 . . . . . . . . . . . 12 (𝑚 = 𝑛 → ((1st ‘(𝑓𝑚)) − (𝑤 / (2↑𝑚))) = ((1st ‘(𝑓𝑛)) − (𝑤 / (2↑𝑛))))
39 2fveq3 6675 . . . . . . . . . . . 12 (𝑚 = 𝑛 → (2nd ‘(𝑓𝑚)) = (2nd ‘(𝑓𝑛)))
4038, 39opeq12d 4811 . . . . . . . . . . 11 (𝑚 = 𝑛 → ⟨((1st ‘(𝑓𝑚)) − (𝑤 / (2↑𝑚))), (2nd ‘(𝑓𝑚))⟩ = ⟨((1st ‘(𝑓𝑛)) − (𝑤 / (2↑𝑛))), (2nd ‘(𝑓𝑛))⟩)
4140cbvmptv 5169 . . . . . . . . . 10 (𝑚 ∈ ℕ ↦ ⟨((1st ‘(𝑓𝑚)) − (𝑤 / (2↑𝑚))), (2nd ‘(𝑓𝑚))⟩) = (𝑛 ∈ ℕ ↦ ⟨((1st ‘(𝑓𝑛)) − (𝑤 / (2↑𝑛))), (2nd ‘(𝑓𝑛))⟩)
4228, 29, 30, 32, 33, 34, 41ovolval5lem2 42984 . . . . . . . . 9 ((𝑤 ∈ ℝ+𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ (𝐴 ran ([,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))) → ∃𝑧𝑄 𝑧 ≤ (𝑦 +𝑒 𝑤))
43423exp 1115 . . . . . . . 8 (𝑤 ∈ ℝ+ → (𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) → ((𝐴 ran ([,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ [,)) ∘ 𝑓))) → ∃𝑧𝑄 𝑧 ≤ (𝑦 +𝑒 𝑤))))
4443rexlimdv 3283 . . . . . . 7 (𝑤 ∈ ℝ+ → (∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ([,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ [,)) ∘ 𝑓))) → ∃𝑧𝑄 𝑧 ≤ (𝑦 +𝑒 𝑤)))
4544imp 409 . . . . . 6 ((𝑤 ∈ ℝ+ ∧ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ([,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))) → ∃𝑧𝑄 𝑧 ≤ (𝑦 +𝑒 𝑤))
4613, 17, 45syl2anc 586 . . . . 5 ((𝑦𝑀𝑤 ∈ ℝ+) → ∃𝑧𝑄 𝑧 ≤ (𝑦 +𝑒 𝑤))
47463adant1 1126 . . . 4 ((⊤ ∧ 𝑦𝑀𝑤 ∈ ℝ+) → ∃𝑧𝑄 𝑧 ≤ (𝑦 +𝑒 𝑤))
4811, 12, 47infleinf 41689 . . 3 (⊤ → inf(𝑄, ℝ*, < ) ≤ inf(𝑀, ℝ*, < ))
49 eqeq1 2825 . . . . . . . . . 10 (𝑧 = 𝑦 → (𝑧 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)) ↔ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))))
5049anbi2d 630 . . . . . . . . 9 (𝑧 = 𝑦 → ((𝐴 ran ((,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))) ↔ (𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))))
5150rexbidv 3297 . . . . . . . 8 (𝑧 = 𝑦 → (∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))) ↔ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))))
5251cbvrabv 3491 . . . . . . 7 {𝑧 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))} = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))}
53 simpr 487 . . . . . . . . . . . . . 14 ((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝐴 ran ((,) ∘ 𝑓)) → 𝐴 ran ((,) ∘ 𝑓))
54 ioossico 12827 . . . . . . . . . . . . . . . . . . . 20 ((1st ‘(𝑓𝑛))(,)(2nd ‘(𝑓𝑛))) ⊆ ((1st ‘(𝑓𝑛))[,)(2nd ‘(𝑓𝑛)))
5554a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → ((1st ‘(𝑓𝑛))(,)(2nd ‘(𝑓𝑛))) ⊆ ((1st ‘(𝑓𝑛))[,)(2nd ‘(𝑓𝑛))))
5631adantr 483 . . . . . . . . . . . . . . . . . . . . 21 ((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → 𝑓:ℕ⟶(ℝ × ℝ))
57 simpr 487 . . . . . . . . . . . . . . . . . . . . 21 ((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
5856, 57fvovco 41504 . . . . . . . . . . . . . . . . . . . 20 ((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → (((,) ∘ 𝑓)‘𝑛) = ((1st ‘(𝑓𝑛))(,)(2nd ‘(𝑓𝑛))))
5956, 57fvovco 41504 . . . . . . . . . . . . . . . . . . . 20 ((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → (([,) ∘ 𝑓)‘𝑛) = ((1st ‘(𝑓𝑛))[,)(2nd ‘(𝑓𝑛))))
6058, 59sseq12d 4000 . . . . . . . . . . . . . . . . . . 19 ((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → ((((,) ∘ 𝑓)‘𝑛) ⊆ (([,) ∘ 𝑓)‘𝑛) ↔ ((1st ‘(𝑓𝑛))(,)(2nd ‘(𝑓𝑛))) ⊆ ((1st ‘(𝑓𝑛))[,)(2nd ‘(𝑓𝑛)))))
6155, 60mpbird 259 . . . . . . . . . . . . . . . . . 18 ((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → (((,) ∘ 𝑓)‘𝑛) ⊆ (([,) ∘ 𝑓)‘𝑛))
6261ralrimiva 3182 . . . . . . . . . . . . . . . . 17 (𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) → ∀𝑛 ∈ ℕ (((,) ∘ 𝑓)‘𝑛) ⊆ (([,) ∘ 𝑓)‘𝑛))
63 ss2iun 4937 . . . . . . . . . . . . . . . . 17 (∀𝑛 ∈ ℕ (((,) ∘ 𝑓)‘𝑛) ⊆ (([,) ∘ 𝑓)‘𝑛) → 𝑛 ∈ ℕ (((,) ∘ 𝑓)‘𝑛) ⊆ 𝑛 ∈ ℕ (([,) ∘ 𝑓)‘𝑛))
6462, 63syl 17 . . . . . . . . . . . . . . . 16 (𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) → 𝑛 ∈ ℕ (((,) ∘ 𝑓)‘𝑛) ⊆ 𝑛 ∈ ℕ (([,) ∘ 𝑓)‘𝑛))
65 ioof 12836 . . . . . . . . . . . . . . . . . . . . 21 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
6665a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) → (,):(ℝ* × ℝ*)⟶𝒫 ℝ)
67 rexpssxrxp 10686 . . . . . . . . . . . . . . . . . . . . . 22 (ℝ × ℝ) ⊆ (ℝ* × ℝ*)
6867a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) → (ℝ × ℝ) ⊆ (ℝ* × ℝ*))
6931, 68fssd 6528 . . . . . . . . . . . . . . . . . . . 20 (𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) → 𝑓:ℕ⟶(ℝ* × ℝ*))
70 fco 6531 . . . . . . . . . . . . . . . . . . . 20 (((,):(ℝ* × ℝ*)⟶𝒫 ℝ ∧ 𝑓:ℕ⟶(ℝ* × ℝ*)) → ((,) ∘ 𝑓):ℕ⟶𝒫 ℝ)
7166, 69, 70syl2anc 586 . . . . . . . . . . . . . . . . . . 19 (𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) → ((,) ∘ 𝑓):ℕ⟶𝒫 ℝ)
7271ffnd 6515 . . . . . . . . . . . . . . . . . 18 (𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) → ((,) ∘ 𝑓) Fn ℕ)
73 fniunfv 7006 . . . . . . . . . . . . . . . . . 18 (((,) ∘ 𝑓) Fn ℕ → 𝑛 ∈ ℕ (((,) ∘ 𝑓)‘𝑛) = ran ((,) ∘ 𝑓))
7472, 73syl 17 . . . . . . . . . . . . . . . . 17 (𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) → 𝑛 ∈ ℕ (((,) ∘ 𝑓)‘𝑛) = ran ((,) ∘ 𝑓))
75 icof 41531 . . . . . . . . . . . . . . . . . . . . 21 [,):(ℝ* × ℝ*)⟶𝒫 ℝ*
7675a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) → [,):(ℝ* × ℝ*)⟶𝒫 ℝ*)
77 fco 6531 . . . . . . . . . . . . . . . . . . . 20 (([,):(ℝ* × ℝ*)⟶𝒫 ℝ*𝑓:ℕ⟶(ℝ* × ℝ*)) → ([,) ∘ 𝑓):ℕ⟶𝒫 ℝ*)
7876, 69, 77syl2anc 586 . . . . . . . . . . . . . . . . . . 19 (𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) → ([,) ∘ 𝑓):ℕ⟶𝒫 ℝ*)
7978ffnd 6515 . . . . . . . . . . . . . . . . . 18 (𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) → ([,) ∘ 𝑓) Fn ℕ)
80 fniunfv 7006 . . . . . . . . . . . . . . . . . 18 (([,) ∘ 𝑓) Fn ℕ → 𝑛 ∈ ℕ (([,) ∘ 𝑓)‘𝑛) = ran ([,) ∘ 𝑓))
8179, 80syl 17 . . . . . . . . . . . . . . . . 17 (𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) → 𝑛 ∈ ℕ (([,) ∘ 𝑓)‘𝑛) = ran ([,) ∘ 𝑓))
8274, 81sseq12d 4000 . . . . . . . . . . . . . . . 16 (𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) → ( 𝑛 ∈ ℕ (((,) ∘ 𝑓)‘𝑛) ⊆ 𝑛 ∈ ℕ (([,) ∘ 𝑓)‘𝑛) ↔ ran ((,) ∘ 𝑓) ⊆ ran ([,) ∘ 𝑓)))
8364, 82mpbid 234 . . . . . . . . . . . . . . 15 (𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) → ran ((,) ∘ 𝑓) ⊆ ran ([,) ∘ 𝑓))
8483adantr 483 . . . . . . . . . . . . . 14 ((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝐴 ran ((,) ∘ 𝑓)) → ran ((,) ∘ 𝑓) ⊆ ran ([,) ∘ 𝑓))
8553, 84sstrd 3977 . . . . . . . . . . . . 13 ((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝐴 ran ((,) ∘ 𝑓)) → 𝐴 ran ([,) ∘ 𝑓))
8685adantrr 715 . . . . . . . . . . . 12 ((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ (𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))) → 𝐴 ran ([,) ∘ 𝑓))
87 simpr 487 . . . . . . . . . . . . . 14 ((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))) → 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))
8831voliooicof 42330 . . . . . . . . . . . . . . . 16 (𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) → ((vol ∘ (,)) ∘ 𝑓) = ((vol ∘ [,)) ∘ 𝑓))
8988fveq2d 6674 . . . . . . . . . . . . . . 15 (𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) → (Σ^‘((vol ∘ (,)) ∘ 𝑓)) = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))
9089adantr 483 . . . . . . . . . . . . . 14 ((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))) → (Σ^‘((vol ∘ (,)) ∘ 𝑓)) = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))
9187, 90eqtrd 2856 . . . . . . . . . . . . 13 ((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))) → 𝑦 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))
9291adantrl 714 . . . . . . . . . . . 12 ((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ (𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))) → 𝑦 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))
9386, 92jca 514 . . . . . . . . . . 11 ((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ (𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))) → (𝐴 ran ([,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ [,)) ∘ 𝑓))))
9493ex 415 . . . . . . . . . 10 (𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) → ((𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))) → (𝐴 ran ([,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))))
9594reximia 3242 . . . . . . . . 9 (∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))) → ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ([,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ [,)) ∘ 𝑓))))
9695rgenw 3150 . . . . . . . 8 𝑦 ∈ ℝ* (∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))) → ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ([,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ [,)) ∘ 𝑓))))
97 ss2rab 4047 . . . . . . . 8 ({𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))} ⊆ {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ([,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))} ↔ ∀𝑦 ∈ ℝ* (∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))) → ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ([,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))))
9896, 97mpbir 233 . . . . . . 7 {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))} ⊆ {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ([,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))}
9952, 98eqsstri 4001 . . . . . 6 {𝑧 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))} ⊆ {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ([,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))}
1001, 6sseq12i 3997 . . . . . 6 (𝑄𝑀 ↔ {𝑧 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))} ⊆ {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ([,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))})
10199, 100mpbir 233 . . . . 5 𝑄𝑀
102 infxrss 12733 . . . . 5 ((𝑄𝑀𝑀 ⊆ ℝ*) → inf(𝑀, ℝ*, < ) ≤ inf(𝑄, ℝ*, < ))
103101, 8, 102mp2an 690 . . . 4 inf(𝑀, ℝ*, < ) ≤ inf(𝑄, ℝ*, < )
104103a1i 11 . . 3 (⊤ → inf(𝑀, ℝ*, < ) ≤ inf(𝑄, ℝ*, < ))
1055, 10, 48, 104xrletrid 12549 . 2 (⊤ → inf(𝑄, ℝ*, < ) = inf(𝑀, ℝ*, < ))
106105mptru 1544 1 inf(𝑄, ℝ*, < ) = inf(𝑀, ℝ*, < )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wtru 1538  wcel 2114  wral 3138  wrex 3139  {crab 3142  wss 3936  𝒫 cpw 4539  cop 4573   cuni 4838   ciun 4919   class class class wbr 5066  cmpt 5146   × cxp 5553  ran crn 5556  ccom 5559   Fn wfn 6350  wf 6351  cfv 6355  (class class class)co 7156  1st c1st 7687  2nd c2nd 7688  m cmap 8406  infcinf 8905  cr 10536  *cxr 10674   < clt 10675  cle 10676  cmin 10870   / cdiv 11297  cn 11638  2c2 11693  +crp 12390   +𝑒 cxad 12506  (,)cioo 12739  [,)cico 12741  cexp 13430  volcvol 24064  Σ^csumge0 42693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-er 8289  df-map 8408  df-pm 8409  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fi 8875  df-sup 8906  df-inf 8907  df-oi 8974  df-dju 9330  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-n0 11899  df-z 11983  df-uz 12245  df-q 12350  df-rp 12391  df-xneg 12508  df-xadd 12509  df-xmul 12510  df-ioo 12743  df-ico 12745  df-icc 12746  df-fz 12894  df-fzo 13035  df-fl 13163  df-seq 13371  df-exp 13431  df-hash 13692  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-clim 14845  df-rlim 14846  df-sum 15043  df-rest 16696  df-topgen 16717  df-psmet 20537  df-xmet 20538  df-met 20539  df-bl 20540  df-mopn 20541  df-top 21502  df-topon 21519  df-bases 21554  df-cmp 21995  df-ovol 24065  df-vol 24066  df-sumge0 42694
This theorem is referenced by:  ovolval5  42986
  Copyright terms: Public domain W3C validator