Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcmfunnnd Structured version   Visualization version   GIF version

Theorem lcmfunnnd 39159
Description: Useful equation to calculate the least common multiple of 1 to n. (Contributed by metakunt, 29-Apr-2024.)
Hypothesis
Ref Expression
lcmfunnnd.1 (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
lcmfunnnd (𝜑 → (lcm‘(1...𝑁)) = ((lcm‘(1...(𝑁 − 1))) lcm 𝑁))

Proof of Theorem lcmfunnnd
StepHypRef Expression
1 lcmfunnnd.1 . . . . . . . 8 (𝜑𝑁 ∈ ℕ)
21nncnd 11640 . . . . . . 7 (𝜑𝑁 ∈ ℂ)
3 1cnd 10622 . . . . . . 7 (𝜑 → 1 ∈ ℂ)
42, 3npcand 10987 . . . . . 6 (𝜑 → ((𝑁 − 1) + 1) = 𝑁)
54oveq2d 7158 . . . . 5 (𝜑 → (1...((𝑁 − 1) + 1)) = (1...𝑁))
6 nnm1nn0 11925 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
71, 6syl 17 . . . . . . . 8 (𝜑 → (𝑁 − 1) ∈ ℕ0)
8 nn0uz 12267 . . . . . . . . 9 0 = (ℤ‘0)
98eleq2i 2904 . . . . . . . 8 ((𝑁 − 1) ∈ ℕ0 ↔ (𝑁 − 1) ∈ (ℤ‘0))
107, 9sylib 220 . . . . . . 7 (𝜑 → (𝑁 − 1) ∈ (ℤ‘0))
11 1m1e0 11696 . . . . . . . . . 10 (1 − 1) = 0
1211fveq2i 6659 . . . . . . . . 9 (ℤ‘(1 − 1)) = (ℤ‘0)
1312eleq2i 2904 . . . . . . . 8 ((𝑁 − 1) ∈ (ℤ‘(1 − 1)) ↔ (𝑁 − 1) ∈ (ℤ‘0))
1413a1i 11 . . . . . . 7 (𝜑 → ((𝑁 − 1) ∈ (ℤ‘(1 − 1)) ↔ (𝑁 − 1) ∈ (ℤ‘0)))
1510, 14mpbird 259 . . . . . 6 (𝜑 → (𝑁 − 1) ∈ (ℤ‘(1 − 1)))
16 1z 11999 . . . . . . 7 1 ∈ ℤ
17 fzsuc2 12955 . . . . . . 7 ((1 ∈ ℤ ∧ (𝑁 − 1) ∈ (ℤ‘(1 − 1))) → (1...((𝑁 − 1) + 1)) = ((1...(𝑁 − 1)) ∪ {((𝑁 − 1) + 1)}))
1816, 17mpan 688 . . . . . 6 ((𝑁 − 1) ∈ (ℤ‘(1 − 1)) → (1...((𝑁 − 1) + 1)) = ((1...(𝑁 − 1)) ∪ {((𝑁 − 1) + 1)}))
1915, 18syl 17 . . . . 5 (𝜑 → (1...((𝑁 − 1) + 1)) = ((1...(𝑁 − 1)) ∪ {((𝑁 − 1) + 1)}))
205, 19eqtr3d 2858 . . . 4 (𝜑 → (1...𝑁) = ((1...(𝑁 − 1)) ∪ {((𝑁 − 1) + 1)}))
214sneqd 4565 . . . . 5 (𝜑 → {((𝑁 − 1) + 1)} = {𝑁})
2221uneq2d 4127 . . . 4 (𝜑 → ((1...(𝑁 − 1)) ∪ {((𝑁 − 1) + 1)}) = ((1...(𝑁 − 1)) ∪ {𝑁}))
2320, 22eqtrd 2856 . . 3 (𝜑 → (1...𝑁) = ((1...(𝑁 − 1)) ∪ {𝑁}))
2423fveq2d 6660 . 2 (𝜑 → (lcm‘(1...𝑁)) = (lcm‘((1...(𝑁 − 1)) ∪ {𝑁})))
25 fzssz 12899 . . . . 5 (1...(𝑁 − 1)) ⊆ ℤ
2625a1i 11 . . . 4 (𝜑 → (1...(𝑁 − 1)) ⊆ ℤ)
27 fzfi 13330 . . . . 5 (1...(𝑁 − 1)) ∈ Fin
2827a1i 11 . . . 4 (𝜑 → (1...(𝑁 − 1)) ∈ Fin)
29 nnz 11991 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
301, 29syl 17 . . . 4 (𝜑𝑁 ∈ ℤ)
3126, 28, 303jca 1124 . . 3 (𝜑 → ((1...(𝑁 − 1)) ⊆ ℤ ∧ (1...(𝑁 − 1)) ∈ Fin ∧ 𝑁 ∈ ℤ))
32 lcmfunsn 15971 . . 3 (((1...(𝑁 − 1)) ⊆ ℤ ∧ (1...(𝑁 − 1)) ∈ Fin ∧ 𝑁 ∈ ℤ) → (lcm‘((1...(𝑁 − 1)) ∪ {𝑁})) = ((lcm‘(1...(𝑁 − 1))) lcm 𝑁))
3331, 32syl 17 . 2 (𝜑 → (lcm‘((1...(𝑁 − 1)) ∪ {𝑁})) = ((lcm‘(1...(𝑁 − 1))) lcm 𝑁))
3424, 33eqtrd 2856 1 (𝜑 → (lcm‘(1...𝑁)) = ((lcm‘(1...(𝑁 − 1))) lcm 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  w3a 1083   = wceq 1537  wcel 2114  cun 3922  wss 3924  {csn 4553  cfv 6341  (class class class)co 7142  Fincfn 8495  0cc0 10523  1c1 10524   + caddc 10526  cmin 10856  cn 11624  0cn0 11884  cz 11968  cuz 12230  ...cfz 12882   lcm clcm 15915  lcmclcmf 15916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5252  ax-pr 5316  ax-un 7447  ax-inf2 9090  ax-cnex 10579  ax-resscn 10580  ax-1cn 10581  ax-icn 10582  ax-addcl 10583  ax-addrcl 10584  ax-mulcl 10585  ax-mulrcl 10586  ax-mulcom 10587  ax-addass 10588  ax-mulass 10589  ax-distr 10590  ax-i2m1 10591  ax-1ne0 10592  ax-1rid 10593  ax-rnegex 10594  ax-rrecex 10595  ax-cnre 10596  ax-pre-lttri 10597  ax-pre-lttrn 10598  ax-pre-ltadd 10599  ax-pre-mulgt0 10600  ax-pre-sup 10601
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3488  df-sbc 3764  df-csb 3872  df-dif 3927  df-un 3929  df-in 3931  df-ss 3940  df-pss 3942  df-nul 4280  df-if 4454  df-pw 4527  df-sn 4554  df-pr 4556  df-tp 4558  df-op 4560  df-uni 4825  df-int 4863  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5446  df-eprel 5451  df-po 5460  df-so 5461  df-fr 5500  df-se 5501  df-we 5502  df-xp 5547  df-rel 5548  df-cnv 5549  df-co 5550  df-dm 5551  df-rn 5552  df-res 5553  df-ima 5554  df-pred 6134  df-ord 6180  df-on 6181  df-lim 6182  df-suc 6183  df-iota 6300  df-fun 6343  df-fn 6344  df-f 6345  df-f1 6346  df-fo 6347  df-f1o 6348  df-fv 6349  df-isom 6350  df-riota 7100  df-ov 7145  df-oprab 7146  df-mpo 7147  df-om 7567  df-1st 7675  df-2nd 7676  df-wrecs 7933  df-recs 7994  df-rdg 8032  df-1o 8088  df-oadd 8092  df-er 8275  df-en 8496  df-dom 8497  df-sdom 8498  df-fin 8499  df-sup 8892  df-inf 8893  df-oi 8960  df-card 9354  df-pnf 10663  df-mnf 10664  df-xr 10665  df-ltxr 10666  df-le 10667  df-sub 10858  df-neg 10859  df-div 11284  df-nn 11625  df-2 11687  df-3 11688  df-n0 11885  df-z 11969  df-uz 12231  df-rp 12377  df-fz 12883  df-fzo 13024  df-fl 13152  df-mod 13228  df-seq 13360  df-exp 13420  df-hash 13681  df-cj 14443  df-re 14444  df-im 14445  df-sqrt 14579  df-abs 14580  df-clim 14830  df-prod 15245  df-dvds 15593  df-gcd 15827  df-lcm 15917  df-lcmf 15918
This theorem is referenced by:  lcm1un  39160  lcm2un  39161  lcm3un  39162  lcm4un  39163  lcm5un  39164  lcm6un  39165  lcm7un  39166  lcm8un  39167
  Copyright terms: Public domain W3C validator