MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmoleub2lem Structured version   Visualization version   GIF version

Theorem nmoleub2lem 23718
Description: Lemma for nmoleub2a 23721 and similar theorems. (Contributed by Mario Carneiro, 19-Oct-2015.)
Hypotheses
Ref Expression
nmoleub2.n 𝑁 = (𝑆 normOp 𝑇)
nmoleub2.v 𝑉 = (Base‘𝑆)
nmoleub2.l 𝐿 = (norm‘𝑆)
nmoleub2.m 𝑀 = (norm‘𝑇)
nmoleub2.g 𝐺 = (Scalar‘𝑆)
nmoleub2.w 𝐾 = (Base‘𝐺)
nmoleub2.s (𝜑𝑆 ∈ (NrmMod ∩ ℂMod))
nmoleub2.t (𝜑𝑇 ∈ (NrmMod ∩ ℂMod))
nmoleub2.f (𝜑𝐹 ∈ (𝑆 LMHom 𝑇))
nmoleub2.a (𝜑𝐴 ∈ ℝ*)
nmoleub2.r (𝜑𝑅 ∈ ℝ+)
nmoleub2lem.5 ((𝜑 ∧ ∀𝑥𝑉 (𝜓 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) → 0 ≤ 𝐴)
nmoleub2lem.6 ((((𝜑 ∧ ∀𝑥𝑉 (𝜓 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (𝑀‘(𝐹𝑦)) ≤ (𝐴 · (𝐿𝑦)))
nmoleub2lem.7 ((𝜑𝑥𝑉) → (𝜓 → (𝐿𝑥) ≤ 𝑅))
Assertion
Ref Expression
nmoleub2lem (𝜑 → ((𝑁𝐹) ≤ 𝐴 ↔ ∀𝑥𝑉 (𝜓 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐹,𝑦   𝑥,𝐿,𝑦   𝑥,𝑁,𝑦   𝑥,𝑀,𝑦   𝜑,𝑥,𝑦   𝜓,𝑦   𝑥,𝑆,𝑦   𝑥,𝑉,𝑦   𝑥,𝑅,𝑦   𝑦,𝑇
Allowed substitution hints:   𝜓(𝑥)   𝑇(𝑥)   𝐺(𝑥,𝑦)   𝐾(𝑥,𝑦)

Proof of Theorem nmoleub2lem
StepHypRef Expression
1 nmoleub2lem.7 . . . . 5 ((𝜑𝑥𝑉) → (𝜓 → (𝐿𝑥) ≤ 𝑅))
21adantlr 713 . . . 4 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ 𝑥𝑉) → (𝜓 → (𝐿𝑥) ≤ 𝑅))
3 nmoleub2.t . . . . . . . . . . . 12 (𝜑𝑇 ∈ (NrmMod ∩ ℂMod))
43elin1d 4175 . . . . . . . . . . 11 (𝜑𝑇 ∈ NrmMod)
5 nlmngp 23286 . . . . . . . . . . 11 (𝑇 ∈ NrmMod → 𝑇 ∈ NrmGrp)
64, 5syl 17 . . . . . . . . . 10 (𝜑𝑇 ∈ NrmGrp)
76ad2antrr 724 . . . . . . . . 9 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → 𝑇 ∈ NrmGrp)
8 nmoleub2.f . . . . . . . . . . . 12 (𝜑𝐹 ∈ (𝑆 LMHom 𝑇))
9 nmoleub2.v . . . . . . . . . . . . 13 𝑉 = (Base‘𝑆)
10 eqid 2821 . . . . . . . . . . . . 13 (Base‘𝑇) = (Base‘𝑇)
119, 10lmhmf 19806 . . . . . . . . . . . 12 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹:𝑉⟶(Base‘𝑇))
128, 11syl 17 . . . . . . . . . . 11 (𝜑𝐹:𝑉⟶(Base‘𝑇))
1312ad2antrr 724 . . . . . . . . . 10 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → 𝐹:𝑉⟶(Base‘𝑇))
14 simprl 769 . . . . . . . . . 10 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → 𝑥𝑉)
1513, 14ffvelrnd 6852 . . . . . . . . 9 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → (𝐹𝑥) ∈ (Base‘𝑇))
16 nmoleub2.m . . . . . . . . . 10 𝑀 = (norm‘𝑇)
1710, 16nmcl 23225 . . . . . . . . 9 ((𝑇 ∈ NrmGrp ∧ (𝐹𝑥) ∈ (Base‘𝑇)) → (𝑀‘(𝐹𝑥)) ∈ ℝ)
187, 15, 17syl2anc 586 . . . . . . . 8 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → (𝑀‘(𝐹𝑥)) ∈ ℝ)
19 nmoleub2.r . . . . . . . . 9 (𝜑𝑅 ∈ ℝ+)
2019ad2antrr 724 . . . . . . . 8 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → 𝑅 ∈ ℝ+)
2118, 20rerpdivcld 12463 . . . . . . 7 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → ((𝑀‘(𝐹𝑥)) / 𝑅) ∈ ℝ)
2221rexrd 10691 . . . . . 6 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → ((𝑀‘(𝐹𝑥)) / 𝑅) ∈ ℝ*)
23 nmoleub2.s . . . . . . . . . 10 (𝜑𝑆 ∈ (NrmMod ∩ ℂMod))
2423elin1d 4175 . . . . . . . . 9 (𝜑𝑆 ∈ NrmMod)
25 nlmngp 23286 . . . . . . . . 9 (𝑆 ∈ NrmMod → 𝑆 ∈ NrmGrp)
2624, 25syl 17 . . . . . . . 8 (𝜑𝑆 ∈ NrmGrp)
27 lmghm 19803 . . . . . . . . 9 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
288, 27syl 17 . . . . . . . 8 (𝜑𝐹 ∈ (𝑆 GrpHom 𝑇))
29 nmoleub2.n . . . . . . . . 9 𝑁 = (𝑆 normOp 𝑇)
3029nmocl 23329 . . . . . . . 8 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → (𝑁𝐹) ∈ ℝ*)
3126, 6, 28, 30syl3anc 1367 . . . . . . 7 (𝜑 → (𝑁𝐹) ∈ ℝ*)
3231ad2antrr 724 . . . . . 6 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → (𝑁𝐹) ∈ ℝ*)
33 nmoleub2.a . . . . . . 7 (𝜑𝐴 ∈ ℝ*)
3433ad2antrr 724 . . . . . 6 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → 𝐴 ∈ ℝ*)
3520rpred 12432 . . . . . . . . . 10 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → 𝑅 ∈ ℝ)
36 rexmul 12665 . . . . . . . . . 10 ((((𝑀‘(𝐹𝑥)) / 𝑅) ∈ ℝ ∧ 𝑅 ∈ ℝ) → (((𝑀‘(𝐹𝑥)) / 𝑅) ·e 𝑅) = (((𝑀‘(𝐹𝑥)) / 𝑅) · 𝑅))
3721, 35, 36syl2anc 586 . . . . . . . . 9 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → (((𝑀‘(𝐹𝑥)) / 𝑅) ·e 𝑅) = (((𝑀‘(𝐹𝑥)) / 𝑅) · 𝑅))
3818recnd 10669 . . . . . . . . . 10 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → (𝑀‘(𝐹𝑥)) ∈ ℂ)
3935recnd 10669 . . . . . . . . . 10 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → 𝑅 ∈ ℂ)
4020rpne0d 12437 . . . . . . . . . 10 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → 𝑅 ≠ 0)
4138, 39, 40divcan1d 11417 . . . . . . . . 9 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → (((𝑀‘(𝐹𝑥)) / 𝑅) · 𝑅) = (𝑀‘(𝐹𝑥)))
4237, 41eqtrd 2856 . . . . . . . 8 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → (((𝑀‘(𝐹𝑥)) / 𝑅) ·e 𝑅) = (𝑀‘(𝐹𝑥)))
4318rexrd 10691 . . . . . . . . 9 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → (𝑀‘(𝐹𝑥)) ∈ ℝ*)
4426ad2antrr 724 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → 𝑆 ∈ NrmGrp)
45 nmoleub2.l . . . . . . . . . . . . 13 𝐿 = (norm‘𝑆)
469, 45nmcl 23225 . . . . . . . . . . . 12 ((𝑆 ∈ NrmGrp ∧ 𝑥𝑉) → (𝐿𝑥) ∈ ℝ)
4744, 14, 46syl2anc 586 . . . . . . . . . . 11 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → (𝐿𝑥) ∈ ℝ)
4847rexrd 10691 . . . . . . . . . 10 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → (𝐿𝑥) ∈ ℝ*)
4932, 48xmulcld 12696 . . . . . . . . 9 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → ((𝑁𝐹) ·e (𝐿𝑥)) ∈ ℝ*)
5020rpxrd 12433 . . . . . . . . . 10 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → 𝑅 ∈ ℝ*)
5132, 50xmulcld 12696 . . . . . . . . 9 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → ((𝑁𝐹) ·e 𝑅) ∈ ℝ*)
5228ad2antrr 724 . . . . . . . . . 10 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
5329, 9, 45, 16nmoix 23338 . . . . . . . . . 10 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑥𝑉) → (𝑀‘(𝐹𝑥)) ≤ ((𝑁𝐹) ·e (𝐿𝑥)))
5444, 7, 52, 14, 53syl31anc 1369 . . . . . . . . 9 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → (𝑀‘(𝐹𝑥)) ≤ ((𝑁𝐹) ·e (𝐿𝑥)))
5529nmoge0 23330 . . . . . . . . . . . . 13 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → 0 ≤ (𝑁𝐹))
5626, 6, 28, 55syl3anc 1367 . . . . . . . . . . . 12 (𝜑 → 0 ≤ (𝑁𝐹))
5731, 56jca 514 . . . . . . . . . . 11 (𝜑 → ((𝑁𝐹) ∈ ℝ* ∧ 0 ≤ (𝑁𝐹)))
5857ad2antrr 724 . . . . . . . . . 10 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → ((𝑁𝐹) ∈ ℝ* ∧ 0 ≤ (𝑁𝐹)))
59 simprr 771 . . . . . . . . . 10 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → (𝐿𝑥) ≤ 𝑅)
60 xlemul2a 12683 . . . . . . . . . 10 ((((𝐿𝑥) ∈ ℝ*𝑅 ∈ ℝ* ∧ ((𝑁𝐹) ∈ ℝ* ∧ 0 ≤ (𝑁𝐹))) ∧ (𝐿𝑥) ≤ 𝑅) → ((𝑁𝐹) ·e (𝐿𝑥)) ≤ ((𝑁𝐹) ·e 𝑅))
6148, 50, 58, 59, 60syl31anc 1369 . . . . . . . . 9 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → ((𝑁𝐹) ·e (𝐿𝑥)) ≤ ((𝑁𝐹) ·e 𝑅))
6243, 49, 51, 54, 61xrletrd 12556 . . . . . . . 8 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → (𝑀‘(𝐹𝑥)) ≤ ((𝑁𝐹) ·e 𝑅))
6342, 62eqbrtrd 5088 . . . . . . 7 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → (((𝑀‘(𝐹𝑥)) / 𝑅) ·e 𝑅) ≤ ((𝑁𝐹) ·e 𝑅))
64 xlemul1 12684 . . . . . . . 8 ((((𝑀‘(𝐹𝑥)) / 𝑅) ∈ ℝ* ∧ (𝑁𝐹) ∈ ℝ*𝑅 ∈ ℝ+) → (((𝑀‘(𝐹𝑥)) / 𝑅) ≤ (𝑁𝐹) ↔ (((𝑀‘(𝐹𝑥)) / 𝑅) ·e 𝑅) ≤ ((𝑁𝐹) ·e 𝑅)))
6522, 32, 20, 64syl3anc 1367 . . . . . . 7 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → (((𝑀‘(𝐹𝑥)) / 𝑅) ≤ (𝑁𝐹) ↔ (((𝑀‘(𝐹𝑥)) / 𝑅) ·e 𝑅) ≤ ((𝑁𝐹) ·e 𝑅)))
6663, 65mpbird 259 . . . . . 6 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ (𝑁𝐹))
67 simplr 767 . . . . . 6 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → (𝑁𝐹) ≤ 𝐴)
6822, 32, 34, 66, 67xrletrd 12556 . . . . 5 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)
6968expr 459 . . . 4 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ 𝑥𝑉) → ((𝐿𝑥) ≤ 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴))
702, 69syld 47 . . 3 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ 𝑥𝑉) → (𝜓 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴))
7170ralrimiva 3182 . 2 ((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) → ∀𝑥𝑉 (𝜓 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴))
72 eqid 2821 . . . 4 (0g𝑆) = (0g𝑆)
7326ad2antrr 724 . . . 4 (((𝜑 ∧ ∀𝑥𝑉 (𝜓 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) → 𝑆 ∈ NrmGrp)
746ad2antrr 724 . . . 4 (((𝜑 ∧ ∀𝑥𝑉 (𝜓 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) → 𝑇 ∈ NrmGrp)
7528ad2antrr 724 . . . 4 (((𝜑 ∧ ∀𝑥𝑉 (𝜓 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
76 simpr 487 . . . 4 (((𝜑 ∧ ∀𝑥𝑉 (𝜓 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) → 𝐴 ∈ ℝ)
77 nmoleub2lem.5 . . . . 5 ((𝜑 ∧ ∀𝑥𝑉 (𝜓 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) → 0 ≤ 𝐴)
7877adantr 483 . . . 4 (((𝜑 ∧ ∀𝑥𝑉 (𝜓 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) → 0 ≤ 𝐴)
79 nmoleub2lem.6 . . . 4 ((((𝜑 ∧ ∀𝑥𝑉 (𝜓 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (𝑀‘(𝐹𝑦)) ≤ (𝐴 · (𝐿𝑦)))
8029, 9, 45, 16, 72, 73, 74, 75, 76, 78, 79nmolb2d 23327 . . 3 (((𝜑 ∧ ∀𝑥𝑉 (𝜓 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) → (𝑁𝐹) ≤ 𝐴)
8131ad2antrr 724 . . . . 5 (((𝜑 ∧ ∀𝑥𝑉 (𝜓 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 = +∞) → (𝑁𝐹) ∈ ℝ*)
82 pnfge 12526 . . . . 5 ((𝑁𝐹) ∈ ℝ* → (𝑁𝐹) ≤ +∞)
8381, 82syl 17 . . . 4 (((𝜑 ∧ ∀𝑥𝑉 (𝜓 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 = +∞) → (𝑁𝐹) ≤ +∞)
84 simpr 487 . . . 4 (((𝜑 ∧ ∀𝑥𝑉 (𝜓 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 = +∞) → 𝐴 = +∞)
8583, 84breqtrrd 5094 . . 3 (((𝜑 ∧ ∀𝑥𝑉 (𝜓 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 = +∞) → (𝑁𝐹) ≤ 𝐴)
8633adantr 483 . . . . 5 ((𝜑 ∧ ∀𝑥𝑉 (𝜓 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) → 𝐴 ∈ ℝ*)
87 ge0nemnf 12567 . . . . . 6 ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) → 𝐴 ≠ -∞)
8886, 77, 87syl2anc 586 . . . . 5 ((𝜑 ∧ ∀𝑥𝑉 (𝜓 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) → 𝐴 ≠ -∞)
8986, 88jca 514 . . . 4 ((𝜑 ∧ ∀𝑥𝑉 (𝜓 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) → (𝐴 ∈ ℝ*𝐴 ≠ -∞))
90 xrnemnf 12513 . . . 4 ((𝐴 ∈ ℝ*𝐴 ≠ -∞) ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞))
9189, 90sylib 220 . . 3 ((𝜑 ∧ ∀𝑥𝑉 (𝜓 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) → (𝐴 ∈ ℝ ∨ 𝐴 = +∞))
9280, 85, 91mpjaodan 955 . 2 ((𝜑 ∧ ∀𝑥𝑉 (𝜓 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) → (𝑁𝐹) ≤ 𝐴)
9371, 92impbida 799 1 (𝜑 → ((𝑁𝐹) ≤ 𝐴 ↔ ∀𝑥𝑉 (𝜓 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wo 843   = wceq 1537  wcel 2114  wne 3016  wral 3138  cin 3935   class class class wbr 5066  wf 6351  cfv 6355  (class class class)co 7156  cr 10536  0cc0 10537   · cmul 10542  +∞cpnf 10672  -∞cmnf 10673  *cxr 10674  cle 10676   / cdiv 11297  +crp 12390   ·e cxmu 12507  Basecbs 16483  Scalarcsca 16568  0gc0g 16713   GrpHom cghm 18355   LMHom clmhm 19791  normcnm 23186  NrmGrpcngp 23187  NrmModcnlm 23190   normOp cnmo 23314  ℂModcclm 23666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-sup 8906  df-inf 8907  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-n0 11899  df-z 11983  df-uz 12245  df-q 12350  df-rp 12391  df-xneg 12508  df-xadd 12509  df-xmul 12510  df-ico 12745  df-0g 16715  df-topgen 16717  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-grp 18106  df-ghm 18356  df-lmhm 19794  df-psmet 20537  df-xmet 20538  df-met 20539  df-bl 20540  df-mopn 20541  df-top 21502  df-topon 21519  df-topsp 21541  df-bases 21554  df-xms 22930  df-ms 22931  df-nm 23192  df-ngp 23193  df-nlm 23196  df-nmo 23317  df-nghm 23318
This theorem is referenced by:  nmoleub2lem2  23720  nmoleub3  23723
  Copyright terms: Public domain W3C validator