MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcohtpy Structured version   Visualization version   GIF version

Theorem pcohtpy 22728
Description: Homotopy invariance of path concatenation. (Contributed by Jeff Madsen, 15-Jun-2010.) (Revised by Mario Carneiro, 24-Feb-2015.)
Hypotheses
Ref Expression
pcohtpy.4 (𝜑 → (𝐹‘1) = (𝐺‘0))
pcohtpy.5 (𝜑𝐹( ≃ph𝐽)𝐻)
pcohtpy.6 (𝜑𝐺( ≃ph𝐽)𝐾)
Assertion
Ref Expression
pcohtpy (𝜑 → (𝐹(*𝑝𝐽)𝐺)( ≃ph𝐽)(𝐻(*𝑝𝐽)𝐾))

Proof of Theorem pcohtpy
Dummy variables 𝑚 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pcohtpy.5 . . . . 5 (𝜑𝐹( ≃ph𝐽)𝐻)
2 isphtpc 22701 . . . . 5 (𝐹( ≃ph𝐽)𝐻 ↔ (𝐹 ∈ (II Cn 𝐽) ∧ 𝐻 ∈ (II Cn 𝐽) ∧ (𝐹(PHtpy‘𝐽)𝐻) ≠ ∅))
31, 2sylib 208 . . . 4 (𝜑 → (𝐹 ∈ (II Cn 𝐽) ∧ 𝐻 ∈ (II Cn 𝐽) ∧ (𝐹(PHtpy‘𝐽)𝐻) ≠ ∅))
43simp1d 1071 . . 3 (𝜑𝐹 ∈ (II Cn 𝐽))
5 pcohtpy.6 . . . . 5 (𝜑𝐺( ≃ph𝐽)𝐾)
6 isphtpc 22701 . . . . 5 (𝐺( ≃ph𝐽)𝐾 ↔ (𝐺 ∈ (II Cn 𝐽) ∧ 𝐾 ∈ (II Cn 𝐽) ∧ (𝐺(PHtpy‘𝐽)𝐾) ≠ ∅))
75, 6sylib 208 . . . 4 (𝜑 → (𝐺 ∈ (II Cn 𝐽) ∧ 𝐾 ∈ (II Cn 𝐽) ∧ (𝐺(PHtpy‘𝐽)𝐾) ≠ ∅))
87simp1d 1071 . . 3 (𝜑𝐺 ∈ (II Cn 𝐽))
9 pcohtpy.4 . . 3 (𝜑 → (𝐹‘1) = (𝐺‘0))
104, 8, 9pcocn 22725 . 2 (𝜑 → (𝐹(*𝑝𝐽)𝐺) ∈ (II Cn 𝐽))
113simp2d 1072 . . 3 (𝜑𝐻 ∈ (II Cn 𝐽))
127simp2d 1072 . . 3 (𝜑𝐾 ∈ (II Cn 𝐽))
13 phtpc01 22704 . . . . . 6 (𝐹( ≃ph𝐽)𝐻 → ((𝐹‘0) = (𝐻‘0) ∧ (𝐹‘1) = (𝐻‘1)))
141, 13syl 17 . . . . 5 (𝜑 → ((𝐹‘0) = (𝐻‘0) ∧ (𝐹‘1) = (𝐻‘1)))
1514simprd 479 . . . 4 (𝜑 → (𝐹‘1) = (𝐻‘1))
16 phtpc01 22704 . . . . . 6 (𝐺( ≃ph𝐽)𝐾 → ((𝐺‘0) = (𝐾‘0) ∧ (𝐺‘1) = (𝐾‘1)))
175, 16syl 17 . . . . 5 (𝜑 → ((𝐺‘0) = (𝐾‘0) ∧ (𝐺‘1) = (𝐾‘1)))
1817simpld 475 . . . 4 (𝜑 → (𝐺‘0) = (𝐾‘0))
199, 15, 183eqtr3d 2663 . . 3 (𝜑 → (𝐻‘1) = (𝐾‘0))
2011, 12, 19pcocn 22725 . 2 (𝜑 → (𝐻(*𝑝𝐽)𝐾) ∈ (II Cn 𝐽))
213simp3d 1073 . . . . 5 (𝜑 → (𝐹(PHtpy‘𝐽)𝐻) ≠ ∅)
22 n0 3907 . . . . 5 ((𝐹(PHtpy‘𝐽)𝐻) ≠ ∅ ↔ ∃𝑚 𝑚 ∈ (𝐹(PHtpy‘𝐽)𝐻))
2321, 22sylib 208 . . . 4 (𝜑 → ∃𝑚 𝑚 ∈ (𝐹(PHtpy‘𝐽)𝐻))
247simp3d 1073 . . . . 5 (𝜑 → (𝐺(PHtpy‘𝐽)𝐾) ≠ ∅)
25 n0 3907 . . . . 5 ((𝐺(PHtpy‘𝐽)𝐾) ≠ ∅ ↔ ∃𝑛 𝑛 ∈ (𝐺(PHtpy‘𝐽)𝐾))
2624, 25sylib 208 . . . 4 (𝜑 → ∃𝑛 𝑛 ∈ (𝐺(PHtpy‘𝐽)𝐾))
27 eeanv 2181 . . . 4 (∃𝑚𝑛(𝑚 ∈ (𝐹(PHtpy‘𝐽)𝐻) ∧ 𝑛 ∈ (𝐺(PHtpy‘𝐽)𝐾)) ↔ (∃𝑚 𝑚 ∈ (𝐹(PHtpy‘𝐽)𝐻) ∧ ∃𝑛 𝑛 ∈ (𝐺(PHtpy‘𝐽)𝐾)))
2823, 26, 27sylanbrc 697 . . 3 (𝜑 → ∃𝑚𝑛(𝑚 ∈ (𝐹(PHtpy‘𝐽)𝐻) ∧ 𝑛 ∈ (𝐺(PHtpy‘𝐽)𝐾)))
299adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (𝐹(PHtpy‘𝐽)𝐻) ∧ 𝑛 ∈ (𝐺(PHtpy‘𝐽)𝐾))) → (𝐹‘1) = (𝐺‘0))
301adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (𝐹(PHtpy‘𝐽)𝐻) ∧ 𝑛 ∈ (𝐺(PHtpy‘𝐽)𝐾))) → 𝐹( ≃ph𝐽)𝐻)
315adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (𝐹(PHtpy‘𝐽)𝐻) ∧ 𝑛 ∈ (𝐺(PHtpy‘𝐽)𝐾))) → 𝐺( ≃ph𝐽)𝐾)
32 eqid 2621 . . . . . . 7 (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), ((2 · 𝑥)𝑚𝑦), (((2 · 𝑥) − 1)𝑛𝑦))) = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), ((2 · 𝑥)𝑚𝑦), (((2 · 𝑥) − 1)𝑛𝑦)))
33 simprl 793 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (𝐹(PHtpy‘𝐽)𝐻) ∧ 𝑛 ∈ (𝐺(PHtpy‘𝐽)𝐾))) → 𝑚 ∈ (𝐹(PHtpy‘𝐽)𝐻))
34 simprr 795 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (𝐹(PHtpy‘𝐽)𝐻) ∧ 𝑛 ∈ (𝐺(PHtpy‘𝐽)𝐾))) → 𝑛 ∈ (𝐺(PHtpy‘𝐽)𝐾))
3529, 30, 31, 32, 33, 34pcohtpylem 22727 . . . . . 6 ((𝜑 ∧ (𝑚 ∈ (𝐹(PHtpy‘𝐽)𝐻) ∧ 𝑛 ∈ (𝐺(PHtpy‘𝐽)𝐾))) → (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), ((2 · 𝑥)𝑚𝑦), (((2 · 𝑥) − 1)𝑛𝑦))) ∈ ((𝐹(*𝑝𝐽)𝐺)(PHtpy‘𝐽)(𝐻(*𝑝𝐽)𝐾)))
36 ne0i 3897 . . . . . 6 ((𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), ((2 · 𝑥)𝑚𝑦), (((2 · 𝑥) − 1)𝑛𝑦))) ∈ ((𝐹(*𝑝𝐽)𝐺)(PHtpy‘𝐽)(𝐻(*𝑝𝐽)𝐾)) → ((𝐹(*𝑝𝐽)𝐺)(PHtpy‘𝐽)(𝐻(*𝑝𝐽)𝐾)) ≠ ∅)
3735, 36syl 17 . . . . 5 ((𝜑 ∧ (𝑚 ∈ (𝐹(PHtpy‘𝐽)𝐻) ∧ 𝑛 ∈ (𝐺(PHtpy‘𝐽)𝐾))) → ((𝐹(*𝑝𝐽)𝐺)(PHtpy‘𝐽)(𝐻(*𝑝𝐽)𝐾)) ≠ ∅)
3837ex 450 . . . 4 (𝜑 → ((𝑚 ∈ (𝐹(PHtpy‘𝐽)𝐻) ∧ 𝑛 ∈ (𝐺(PHtpy‘𝐽)𝐾)) → ((𝐹(*𝑝𝐽)𝐺)(PHtpy‘𝐽)(𝐻(*𝑝𝐽)𝐾)) ≠ ∅))
3938exlimdvv 1859 . . 3 (𝜑 → (∃𝑚𝑛(𝑚 ∈ (𝐹(PHtpy‘𝐽)𝐻) ∧ 𝑛 ∈ (𝐺(PHtpy‘𝐽)𝐾)) → ((𝐹(*𝑝𝐽)𝐺)(PHtpy‘𝐽)(𝐻(*𝑝𝐽)𝐾)) ≠ ∅))
4028, 39mpd 15 . 2 (𝜑 → ((𝐹(*𝑝𝐽)𝐺)(PHtpy‘𝐽)(𝐻(*𝑝𝐽)𝐾)) ≠ ∅)
41 isphtpc 22701 . 2 ((𝐹(*𝑝𝐽)𝐺)( ≃ph𝐽)(𝐻(*𝑝𝐽)𝐾) ↔ ((𝐹(*𝑝𝐽)𝐺) ∈ (II Cn 𝐽) ∧ (𝐻(*𝑝𝐽)𝐾) ∈ (II Cn 𝐽) ∧ ((𝐹(*𝑝𝐽)𝐺)(PHtpy‘𝐽)(𝐻(*𝑝𝐽)𝐾)) ≠ ∅))
4210, 20, 40, 41syl3anbrc 1244 1 (𝜑 → (𝐹(*𝑝𝐽)𝐺)( ≃ph𝐽)(𝐻(*𝑝𝐽)𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1036   = wceq 1480  wex 1701  wcel 1987  wne 2790  c0 3891  ifcif 4058   class class class wbr 4613  cfv 5847  (class class class)co 6604  cmpt2 6606  0cc0 9880  1c1 9881   · cmul 9885  cle 10019  cmin 10210   / cdiv 10628  2c2 11014  [,]cicc 12120   Cn ccn 20938  IIcii 22586  PHtpycphtpy 22675  phcphtpc 22676  *𝑝cpco 22708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958  ax-mulf 9960
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-iin 4488  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-of 6850  df-om 7013  df-1st 7113  df-2nd 7114  df-supp 7241  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-2o 7506  df-oadd 7509  df-er 7687  df-map 7804  df-ixp 7853  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-fsupp 8220  df-fi 8261  df-sup 8292  df-inf 8293  df-oi 8359  df-card 8709  df-cda 8934  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-5 11026  df-6 11027  df-7 11028  df-8 11029  df-9 11030  df-n0 11237  df-z 11322  df-dec 11438  df-uz 11632  df-q 11733  df-rp 11777  df-xneg 11890  df-xadd 11891  df-xmul 11892  df-ioo 12121  df-icc 12124  df-fz 12269  df-fzo 12407  df-seq 12742  df-exp 12801  df-hash 13058  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-struct 15783  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-ress 15788  df-plusg 15875  df-mulr 15876  df-starv 15877  df-sca 15878  df-vsca 15879  df-ip 15880  df-tset 15881  df-ple 15882  df-ds 15885  df-unif 15886  df-hom 15887  df-cco 15888  df-rest 16004  df-topn 16005  df-0g 16023  df-gsum 16024  df-topgen 16025  df-pt 16026  df-prds 16029  df-xrs 16083  df-qtop 16088  df-imas 16089  df-xps 16091  df-mre 16167  df-mrc 16168  df-acs 16170  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-submnd 17257  df-mulg 17462  df-cntz 17671  df-cmn 18116  df-psmet 19657  df-xmet 19658  df-met 19659  df-bl 19660  df-mopn 19661  df-cnfld 19666  df-top 20621  df-bases 20622  df-topon 20623  df-topsp 20624  df-cld 20733  df-cn 20941  df-cnp 20942  df-tx 21275  df-hmeo 21468  df-xms 22035  df-ms 22036  df-tms 22037  df-ii 22588  df-htpy 22677  df-phtpy 22678  df-phtpc 22699  df-pco 22713
This theorem is referenced by:  pcophtb  22737  pi1cpbl  22752  pi1xfrf  22761  pi1xfr  22763  pi1xfrcnvlem  22764
  Copyright terms: Public domain W3C validator