Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcoptcl Structured version   Visualization version   GIF version

Theorem pcoptcl 22867
 Description: A constant function is a path from 𝑌 to itself. (Contributed by Mario Carneiro, 12-Feb-2015.) (Revised by Mario Carneiro, 19-Mar-2015.)
Hypothesis
Ref Expression
pcopt.1 𝑃 = ((0[,]1) × {𝑌})
Assertion
Ref Expression
pcoptcl ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑌𝑋) → (𝑃 ∈ (II Cn 𝐽) ∧ (𝑃‘0) = 𝑌 ∧ (𝑃‘1) = 𝑌))

Proof of Theorem pcoptcl
StepHypRef Expression
1 pcopt.1 . . 3 𝑃 = ((0[,]1) × {𝑌})
2 iitopon 22729 . . . 4 II ∈ (TopOn‘(0[,]1))
3 cnconst2 21135 . . . 4 ((II ∈ (TopOn‘(0[,]1)) ∧ 𝐽 ∈ (TopOn‘𝑋) ∧ 𝑌𝑋) → ((0[,]1) × {𝑌}) ∈ (II Cn 𝐽))
42, 3mp3an1 1451 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑌𝑋) → ((0[,]1) × {𝑌}) ∈ (II Cn 𝐽))
51, 4syl5eqel 2734 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑌𝑋) → 𝑃 ∈ (II Cn 𝐽))
61fveq1i 6230 . . 3 (𝑃‘0) = (((0[,]1) × {𝑌})‘0)
7 simpr 476 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑌𝑋) → 𝑌𝑋)
8 0elunit 12328 . . . 4 0 ∈ (0[,]1)
9 fvconst2g 6508 . . . 4 ((𝑌𝑋 ∧ 0 ∈ (0[,]1)) → (((0[,]1) × {𝑌})‘0) = 𝑌)
107, 8, 9sylancl 695 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑌𝑋) → (((0[,]1) × {𝑌})‘0) = 𝑌)
116, 10syl5eq 2697 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑌𝑋) → (𝑃‘0) = 𝑌)
121fveq1i 6230 . . 3 (𝑃‘1) = (((0[,]1) × {𝑌})‘1)
13 1elunit 12329 . . . 4 1 ∈ (0[,]1)
14 fvconst2g 6508 . . . 4 ((𝑌𝑋 ∧ 1 ∈ (0[,]1)) → (((0[,]1) × {𝑌})‘1) = 𝑌)
157, 13, 14sylancl 695 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑌𝑋) → (((0[,]1) × {𝑌})‘1) = 𝑌)
1612, 15syl5eq 2697 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑌𝑋) → (𝑃‘1) = 𝑌)
175, 11, 163jca 1261 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑌𝑋) → (𝑃 ∈ (II Cn 𝐽) ∧ (𝑃‘0) = 𝑌 ∧ (𝑃‘1) = 𝑌))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1054   = wceq 1523   ∈ wcel 2030  {csn 4210   × cxp 5141  ‘cfv 5926  (class class class)co 6690  0cc0 9974  1c1 9975  [,]cicc 12216  TopOnctopon 20763   Cn ccn 21076  IIcii 22725 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-map 7901  df-en 7998  df-dom 7999  df-sdom 8000  df-sup 8389  df-inf 8390  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-icc 12220  df-seq 12842  df-exp 12901  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-topgen 16151  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789  df-mopn 19790  df-top 20747  df-topon 20764  df-bases 20798  df-cn 21079  df-cnp 21080  df-ii 22727 This theorem is referenced by:  pcopt  22868  pcopt2  22869  pcorevlem  22872  pi1grplem  22895  sconnpi1  31347  cvxsconn  31351
 Copyright terms: Public domain W3C validator