MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pythagtriplem16 Structured version   Visualization version   GIF version

Theorem pythagtriplem16 15470
Description: Lemma for pythagtrip 15474. Show the relationship between 𝑀, 𝑁, and 𝐵. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Hypotheses
Ref Expression
pythagtriplem15.1 𝑀 = (((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2)
pythagtriplem15.2 𝑁 = (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)
Assertion
Ref Expression
pythagtriplem16 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐵 = (2 · (𝑀 · 𝑁)))

Proof of Theorem pythagtriplem16
StepHypRef Expression
1 pythagtriplem15.1 . . . . 5 𝑀 = (((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2)
2 pythagtriplem15.2 . . . . 5 𝑁 = (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)
31, 2oveq12i 6622 . . . 4 (𝑀 · 𝑁) = ((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2) · (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2))
4 nncn 10980 . . . . . . . . . . . 12 (𝐶 ∈ ℕ → 𝐶 ∈ ℂ)
5 nncn 10980 . . . . . . . . . . . 12 (𝐵 ∈ ℕ → 𝐵 ∈ ℂ)
6 addcl 9970 . . . . . . . . . . . 12 ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐶 + 𝐵) ∈ ℂ)
74, 5, 6syl2anr 495 . . . . . . . . . . 11 ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶 + 𝐵) ∈ ℂ)
87sqrtcld 14118 . . . . . . . . . 10 ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (√‘(𝐶 + 𝐵)) ∈ ℂ)
9 subcl 10232 . . . . . . . . . . . 12 ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐶𝐵) ∈ ℂ)
104, 5, 9syl2anr 495 . . . . . . . . . . 11 ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶𝐵) ∈ ℂ)
1110sqrtcld 14118 . . . . . . . . . 10 ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (√‘(𝐶𝐵)) ∈ ℂ)
12 addcl 9970 . . . . . . . . . 10 (((√‘(𝐶 + 𝐵)) ∈ ℂ ∧ (√‘(𝐶𝐵)) ∈ ℂ) → ((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) ∈ ℂ)
138, 11, 12syl2anc 692 . . . . . . . . 9 ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) ∈ ℂ)
14133adant1 1077 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) ∈ ℂ)
15143ad2ant1 1080 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) ∈ ℂ)
16 subcl 10232 . . . . . . . . . 10 (((√‘(𝐶 + 𝐵)) ∈ ℂ ∧ (√‘(𝐶𝐵)) ∈ ℂ) → ((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) ∈ ℂ)
178, 11, 16syl2anc 692 . . . . . . . . 9 ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) ∈ ℂ)
18173adant1 1077 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) ∈ ℂ)
19183ad2ant1 1080 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) ∈ ℂ)
20 2cnne0 11194 . . . . . . . 8 (2 ∈ ℂ ∧ 2 ≠ 0)
21 divmuldiv 10677 . . . . . . . 8 (((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) ∈ ℂ ∧ ((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) ∈ ℂ) ∧ ((2 ∈ ℂ ∧ 2 ≠ 0) ∧ (2 ∈ ℂ ∧ 2 ≠ 0))) → ((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2) · (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)) = ((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) · ((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵)))) / (2 · 2)))
2220, 20, 21mpanr12 720 . . . . . . 7 ((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) ∈ ℂ ∧ ((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) ∈ ℂ) → ((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2) · (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)) = ((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) · ((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵)))) / (2 · 2)))
2315, 19, 22syl2anc 692 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2) · (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)) = ((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) · ((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵)))) / (2 · 2)))
2413, 17mulcld 10012 . . . . . . . . 9 ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) · ((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵)))) ∈ ℂ)
25243adant1 1077 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) · ((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵)))) ∈ ℂ)
26253ad2ant1 1080 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) · ((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵)))) ∈ ℂ)
27 divdiv1 10688 . . . . . . . 8 (((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) · ((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵)))) ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0) ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → (((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) · ((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵)))) / 2) / 2) = ((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) · ((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵)))) / (2 · 2)))
2820, 20, 27mp3an23 1413 . . . . . . 7 ((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) · ((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵)))) ∈ ℂ → (((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) · ((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵)))) / 2) / 2) = ((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) · ((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵)))) / (2 · 2)))
2926, 28syl 17 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) · ((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵)))) / 2) / 2) = ((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) · ((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵)))) / (2 · 2)))
3023, 29eqtr4d 2658 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2) · (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)) = (((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) · ((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵)))) / 2) / 2))
31 nnre 10979 . . . . . . . . . . . . 13 (𝐶 ∈ ℕ → 𝐶 ∈ ℝ)
32 nnre 10979 . . . . . . . . . . . . 13 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ)
33 readdcl 9971 . . . . . . . . . . . . 13 ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 + 𝐵) ∈ ℝ)
3431, 32, 33syl2anr 495 . . . . . . . . . . . 12 ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶 + 𝐵) ∈ ℝ)
35343adant1 1077 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶 + 𝐵) ∈ ℝ)
36353ad2ant1 1080 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝐶 + 𝐵) ∈ ℝ)
3731adantl 482 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 𝐶 ∈ ℝ)
3832adantr 481 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 𝐵 ∈ ℝ)
39 nngt0 11001 . . . . . . . . . . . . . . 15 (𝐶 ∈ ℕ → 0 < 𝐶)
4039adantl 482 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 0 < 𝐶)
41 nngt0 11001 . . . . . . . . . . . . . . 15 (𝐵 ∈ ℕ → 0 < 𝐵)
4241adantr 481 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 0 < 𝐵)
4337, 38, 40, 42addgt0d 10554 . . . . . . . . . . . . 13 ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 0 < (𝐶 + 𝐵))
44 0re 9992 . . . . . . . . . . . . . 14 0 ∈ ℝ
45 ltle 10078 . . . . . . . . . . . . . 14 ((0 ∈ ℝ ∧ (𝐶 + 𝐵) ∈ ℝ) → (0 < (𝐶 + 𝐵) → 0 ≤ (𝐶 + 𝐵)))
4644, 45mpan 705 . . . . . . . . . . . . 13 ((𝐶 + 𝐵) ∈ ℝ → (0 < (𝐶 + 𝐵) → 0 ≤ (𝐶 + 𝐵)))
4734, 43, 46sylc 65 . . . . . . . . . . . 12 ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 0 ≤ (𝐶 + 𝐵))
48473adant1 1077 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 0 ≤ (𝐶 + 𝐵))
49483ad2ant1 1080 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 0 ≤ (𝐶 + 𝐵))
50 resqrtth 13938 . . . . . . . . . 10 (((𝐶 + 𝐵) ∈ ℝ ∧ 0 ≤ (𝐶 + 𝐵)) → ((√‘(𝐶 + 𝐵))↑2) = (𝐶 + 𝐵))
5136, 49, 50syl2anc 692 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((√‘(𝐶 + 𝐵))↑2) = (𝐶 + 𝐵))
52 resubcl 10297 . . . . . . . . . . . . 13 ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶𝐵) ∈ ℝ)
5331, 32, 52syl2anr 495 . . . . . . . . . . . 12 ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶𝐵) ∈ ℝ)
54533adant1 1077 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶𝐵) ∈ ℝ)
55543ad2ant1 1080 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝐶𝐵) ∈ ℝ)
56 pythagtriplem10 15460 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) → 0 < (𝐶𝐵))
57563adant3 1079 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 0 < (𝐶𝐵))
58 ltle 10078 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ (𝐶𝐵) ∈ ℝ) → (0 < (𝐶𝐵) → 0 ≤ (𝐶𝐵)))
5944, 58mpan 705 . . . . . . . . . . 11 ((𝐶𝐵) ∈ ℝ → (0 < (𝐶𝐵) → 0 ≤ (𝐶𝐵)))
6055, 57, 59sylc 65 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 0 ≤ (𝐶𝐵))
61 resqrtth 13938 . . . . . . . . . 10 (((𝐶𝐵) ∈ ℝ ∧ 0 ≤ (𝐶𝐵)) → ((√‘(𝐶𝐵))↑2) = (𝐶𝐵))
6255, 60, 61syl2anc 692 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((√‘(𝐶𝐵))↑2) = (𝐶𝐵))
6351, 62oveq12d 6628 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (((√‘(𝐶 + 𝐵))↑2) − ((√‘(𝐶𝐵))↑2)) = ((𝐶 + 𝐵) − (𝐶𝐵)))
6463oveq1d 6625 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((((√‘(𝐶 + 𝐵))↑2) − ((√‘(𝐶𝐵))↑2)) / 2) = (((𝐶 + 𝐵) − (𝐶𝐵)) / 2))
65 simp12 1090 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐵 ∈ ℕ)
66 simp13 1091 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐶 ∈ ℕ)
6765, 66, 8syl2anc 692 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (√‘(𝐶 + 𝐵)) ∈ ℂ)
6865, 66, 11syl2anc 692 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (√‘(𝐶𝐵)) ∈ ℂ)
69 subsq 12920 . . . . . . . . 9 (((√‘(𝐶 + 𝐵)) ∈ ℂ ∧ (√‘(𝐶𝐵)) ∈ ℂ) → (((√‘(𝐶 + 𝐵))↑2) − ((√‘(𝐶𝐵))↑2)) = (((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) · ((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵)))))
7067, 68, 69syl2anc 692 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (((√‘(𝐶 + 𝐵))↑2) − ((√‘(𝐶𝐵))↑2)) = (((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) · ((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵)))))
7170oveq1d 6625 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((((√‘(𝐶 + 𝐵))↑2) − ((√‘(𝐶𝐵))↑2)) / 2) = ((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) · ((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵)))) / 2))
72 pnncan 10274 . . . . . . . . . . . . . 14 ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐶 + 𝐵) − (𝐶𝐵)) = (𝐵 + 𝐵))
73723anidm23 1382 . . . . . . . . . . . . 13 ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐶 + 𝐵) − (𝐶𝐵)) = (𝐵 + 𝐵))
74 2times 11097 . . . . . . . . . . . . . 14 (𝐵 ∈ ℂ → (2 · 𝐵) = (𝐵 + 𝐵))
7574adantl 482 . . . . . . . . . . . . 13 ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · 𝐵) = (𝐵 + 𝐵))
7673, 75eqtr4d 2658 . . . . . . . . . . . 12 ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐶 + 𝐵) − (𝐶𝐵)) = (2 · 𝐵))
774, 5, 76syl2anr 495 . . . . . . . . . . 11 ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((𝐶 + 𝐵) − (𝐶𝐵)) = (2 · 𝐵))
78773adant1 1077 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((𝐶 + 𝐵) − (𝐶𝐵)) = (2 · 𝐵))
79783ad2ant1 1080 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶 + 𝐵) − (𝐶𝐵)) = (2 · 𝐵))
8079oveq1d 6625 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (((𝐶 + 𝐵) − (𝐶𝐵)) / 2) = ((2 · 𝐵) / 2))
81 2cn 11043 . . . . . . . . . 10 2 ∈ ℂ
82 2ne0 11065 . . . . . . . . . 10 2 ≠ 0
83 divcan3 10663 . . . . . . . . . 10 ((𝐵 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → ((2 · 𝐵) / 2) = 𝐵)
8481, 82, 83mp3an23 1413 . . . . . . . . 9 (𝐵 ∈ ℂ → ((2 · 𝐵) / 2) = 𝐵)
8565, 5, 843syl 18 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((2 · 𝐵) / 2) = 𝐵)
8680, 85eqtrd 2655 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (((𝐶 + 𝐵) − (𝐶𝐵)) / 2) = 𝐵)
8764, 71, 863eqtr3d 2663 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) · ((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵)))) / 2) = 𝐵)
8887oveq1d 6625 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) · ((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵)))) / 2) / 2) = (𝐵 / 2))
8930, 88eqtrd 2655 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2) · (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)) = (𝐵 / 2))
903, 89syl5eq 2667 . . 3 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝑀 · 𝑁) = (𝐵 / 2))
9190oveq2d 6626 . 2 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (2 · (𝑀 · 𝑁)) = (2 · (𝐵 / 2)))
92 divcan2 10645 . . . . . 6 ((𝐵 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → (2 · (𝐵 / 2)) = 𝐵)
9381, 82, 92mp3an23 1413 . . . . 5 (𝐵 ∈ ℂ → (2 · (𝐵 / 2)) = 𝐵)
945, 93syl 17 . . . 4 (𝐵 ∈ ℕ → (2 · (𝐵 / 2)) = 𝐵)
95943ad2ant2 1081 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (2 · (𝐵 / 2)) = 𝐵)
96953ad2ant1 1080 . 2 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (2 · (𝐵 / 2)) = 𝐵)
9791, 96eqtr2d 2656 1 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐵 = (2 · (𝑀 · 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  w3a 1036   = wceq 1480  wcel 1987  wne 2790   class class class wbr 4618  cfv 5852  (class class class)co 6610  cc 9886  cr 9887  0cc0 9888  1c1 9889   + caddc 9891   · cmul 9893   < clt 10026  cle 10027  cmin 10218   / cdiv 10636  cn 10972  2c2 11022  cexp 12808  csqrt 13915  cdvds 14918   gcd cgcd 15151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-cnex 9944  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965  ax-pre-sup 9966
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-2nd 7121  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-er 7694  df-en 7908  df-dom 7909  df-sdom 7910  df-sup 8300  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221  df-div 10637  df-nn 10973  df-2 11031  df-3 11032  df-n0 11245  df-z 11330  df-uz 11640  df-rp 11785  df-seq 12750  df-exp 12809  df-cj 13781  df-re 13782  df-im 13783  df-sqrt 13917  df-abs 13918
This theorem is referenced by:  pythagtriplem18  15472
  Copyright terms: Public domain W3C validator