MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rescabs Structured version   Visualization version   GIF version

Theorem rescabs 16540
Description: Restriction absorption law. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
rescabs.c (𝜑𝐶𝑉)
rescabs.h (𝜑𝐻 Fn (𝑆 × 𝑆))
rescabs.j (𝜑𝐽 Fn (𝑇 × 𝑇))
rescabs.s (𝜑𝑆𝑊)
rescabs.t (𝜑𝑇𝑆)
Assertion
Ref Expression
rescabs (𝜑 → ((𝐶cat 𝐻) ↾cat 𝐽) = (𝐶cat 𝐽))

Proof of Theorem rescabs
StepHypRef Expression
1 eqid 2651 . . . 4 (((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) ↾cat 𝐽) = (((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) ↾cat 𝐽)
2 ovexd 6720 . . . 4 (𝜑 → ((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) ∈ V)
3 rescabs.s . . . . 5 (𝜑𝑆𝑊)
4 rescabs.t . . . . 5 (𝜑𝑇𝑆)
53, 4ssexd 4838 . . . 4 (𝜑𝑇 ∈ V)
6 rescabs.j . . . 4 (𝜑𝐽 Fn (𝑇 × 𝑇))
71, 2, 5, 6rescval2 16535 . . 3 (𝜑 → (((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) ↾cat 𝐽) = ((((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) ↾s 𝑇) sSet ⟨(Hom ‘ndx), 𝐽⟩))
8 simpr 476 . . . . . . 7 ((𝜑 ∧ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → (Base‘(𝐶s 𝑆)) ⊆ 𝑇)
9 ovexd 6720 . . . . . . 7 ((𝜑 ∧ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → ((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) ∈ V)
105adantr 480 . . . . . . 7 ((𝜑 ∧ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → 𝑇 ∈ V)
11 eqid 2651 . . . . . . . 8 (((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) ↾s 𝑇) = (((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) ↾s 𝑇)
12 baseid 15966 . . . . . . . . 9 Base = Slot (Base‘ndx)
13 1re 10077 . . . . . . . . . . 11 1 ∈ ℝ
14 1nn 11069 . . . . . . . . . . . 12 1 ∈ ℕ
15 4nn0 11349 . . . . . . . . . . . 12 4 ∈ ℕ0
16 1nn0 11346 . . . . . . . . . . . 12 1 ∈ ℕ0
17 1lt10 11719 . . . . . . . . . . . 12 1 < 10
1814, 15, 16, 17declti 11584 . . . . . . . . . . 11 1 < 14
1913, 18ltneii 10188 . . . . . . . . . 10 1 ≠ 14
20 basendx 15970 . . . . . . . . . . 11 (Base‘ndx) = 1
21 homndx 16121 . . . . . . . . . . 11 (Hom ‘ndx) = 14
2220, 21neeq12i 2889 . . . . . . . . . 10 ((Base‘ndx) ≠ (Hom ‘ndx) ↔ 1 ≠ 14)
2319, 22mpbir 221 . . . . . . . . 9 (Base‘ndx) ≠ (Hom ‘ndx)
2412, 23setsnid 15962 . . . . . . . 8 (Base‘(𝐶s 𝑆)) = (Base‘((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩))
2511, 24ressid2 15975 . . . . . . 7 (((Base‘(𝐶s 𝑆)) ⊆ 𝑇 ∧ ((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) ∈ V ∧ 𝑇 ∈ V) → (((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) ↾s 𝑇) = ((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩))
268, 9, 10, 25syl3anc 1366 . . . . . 6 ((𝜑 ∧ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → (((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) ↾s 𝑇) = ((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩))
2726oveq1d 6705 . . . . 5 ((𝜑 ∧ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → ((((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) ↾s 𝑇) sSet ⟨(Hom ‘ndx), 𝐽⟩) = (((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) sSet ⟨(Hom ‘ndx), 𝐽⟩))
28 ovex 6718 . . . . . 6 (𝐶s 𝑆) ∈ V
29 xpexg 7002 . . . . . . . . 9 ((𝑇 ∈ V ∧ 𝑇 ∈ V) → (𝑇 × 𝑇) ∈ V)
305, 5, 29syl2anc 694 . . . . . . . 8 (𝜑 → (𝑇 × 𝑇) ∈ V)
31 fnex 6522 . . . . . . . 8 ((𝐽 Fn (𝑇 × 𝑇) ∧ (𝑇 × 𝑇) ∈ V) → 𝐽 ∈ V)
326, 30, 31syl2anc 694 . . . . . . 7 (𝜑𝐽 ∈ V)
3332adantr 480 . . . . . 6 ((𝜑 ∧ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → 𝐽 ∈ V)
34 setsabs 15949 . . . . . 6 (((𝐶s 𝑆) ∈ V ∧ 𝐽 ∈ V) → (((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) sSet ⟨(Hom ‘ndx), 𝐽⟩) = ((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐽⟩))
3528, 33, 34sylancr 696 . . . . 5 ((𝜑 ∧ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → (((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) sSet ⟨(Hom ‘ndx), 𝐽⟩) = ((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐽⟩))
36 eqid 2651 . . . . . . . . . . . . . 14 (𝐶s 𝑆) = (𝐶s 𝑆)
37 eqid 2651 . . . . . . . . . . . . . 14 (Base‘𝐶) = (Base‘𝐶)
3836, 37ressbas 15977 . . . . . . . . . . . . 13 (𝑆𝑊 → (𝑆 ∩ (Base‘𝐶)) = (Base‘(𝐶s 𝑆)))
393, 38syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑆 ∩ (Base‘𝐶)) = (Base‘(𝐶s 𝑆)))
4039sseq1d 3665 . . . . . . . . . . 11 (𝜑 → ((𝑆 ∩ (Base‘𝐶)) ⊆ 𝑇 ↔ (Base‘(𝐶s 𝑆)) ⊆ 𝑇))
4140biimpar 501 . . . . . . . . . 10 ((𝜑 ∧ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → (𝑆 ∩ (Base‘𝐶)) ⊆ 𝑇)
42 inss2 3867 . . . . . . . . . . 11 (𝑆 ∩ (Base‘𝐶)) ⊆ (Base‘𝐶)
4342a1i 11 . . . . . . . . . 10 ((𝜑 ∧ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → (𝑆 ∩ (Base‘𝐶)) ⊆ (Base‘𝐶))
4441, 43ssind 3870 . . . . . . . . 9 ((𝜑 ∧ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → (𝑆 ∩ (Base‘𝐶)) ⊆ (𝑇 ∩ (Base‘𝐶)))
454adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → 𝑇𝑆)
46 ssrin 3871 . . . . . . . . . 10 (𝑇𝑆 → (𝑇 ∩ (Base‘𝐶)) ⊆ (𝑆 ∩ (Base‘𝐶)))
4745, 46syl 17 . . . . . . . . 9 ((𝜑 ∧ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → (𝑇 ∩ (Base‘𝐶)) ⊆ (𝑆 ∩ (Base‘𝐶)))
4844, 47eqssd 3653 . . . . . . . 8 ((𝜑 ∧ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → (𝑆 ∩ (Base‘𝐶)) = (𝑇 ∩ (Base‘𝐶)))
4948oveq2d 6706 . . . . . . 7 ((𝜑 ∧ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → (𝐶s (𝑆 ∩ (Base‘𝐶))) = (𝐶s (𝑇 ∩ (Base‘𝐶))))
503adantr 480 . . . . . . . 8 ((𝜑 ∧ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → 𝑆𝑊)
5137ressinbas 15983 . . . . . . . 8 (𝑆𝑊 → (𝐶s 𝑆) = (𝐶s (𝑆 ∩ (Base‘𝐶))))
5250, 51syl 17 . . . . . . 7 ((𝜑 ∧ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → (𝐶s 𝑆) = (𝐶s (𝑆 ∩ (Base‘𝐶))))
5337ressinbas 15983 . . . . . . . 8 (𝑇 ∈ V → (𝐶s 𝑇) = (𝐶s (𝑇 ∩ (Base‘𝐶))))
5410, 53syl 17 . . . . . . 7 ((𝜑 ∧ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → (𝐶s 𝑇) = (𝐶s (𝑇 ∩ (Base‘𝐶))))
5549, 52, 543eqtr4d 2695 . . . . . 6 ((𝜑 ∧ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → (𝐶s 𝑆) = (𝐶s 𝑇))
5655oveq1d 6705 . . . . 5 ((𝜑 ∧ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → ((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐽⟩) = ((𝐶s 𝑇) sSet ⟨(Hom ‘ndx), 𝐽⟩))
5727, 35, 563eqtrd 2689 . . . 4 ((𝜑 ∧ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → ((((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) ↾s 𝑇) sSet ⟨(Hom ‘ndx), 𝐽⟩) = ((𝐶s 𝑇) sSet ⟨(Hom ‘ndx), 𝐽⟩))
58 simpr 476 . . . . . . . 8 ((𝜑 ∧ ¬ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → ¬ (Base‘(𝐶s 𝑆)) ⊆ 𝑇)
59 ovexd 6720 . . . . . . . 8 ((𝜑 ∧ ¬ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → ((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) ∈ V)
605adantr 480 . . . . . . . 8 ((𝜑 ∧ ¬ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → 𝑇 ∈ V)
6111, 24ressval2 15976 . . . . . . . 8 ((¬ (Base‘(𝐶s 𝑆)) ⊆ 𝑇 ∧ ((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) ∈ V ∧ 𝑇 ∈ V) → (((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) ↾s 𝑇) = (((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) sSet ⟨(Base‘ndx), (𝑇 ∩ (Base‘(𝐶s 𝑆)))⟩))
6258, 59, 60, 61syl3anc 1366 . . . . . . 7 ((𝜑 ∧ ¬ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → (((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) ↾s 𝑇) = (((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) sSet ⟨(Base‘ndx), (𝑇 ∩ (Base‘(𝐶s 𝑆)))⟩))
63 ovexd 6720 . . . . . . . 8 ((𝜑 ∧ ¬ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → (𝐶s 𝑆) ∈ V)
6423necomi 2877 . . . . . . . . 9 (Hom ‘ndx) ≠ (Base‘ndx)
6564a1i 11 . . . . . . . 8 ((𝜑 ∧ ¬ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → (Hom ‘ndx) ≠ (Base‘ndx))
66 rescabs.h . . . . . . . . . 10 (𝜑𝐻 Fn (𝑆 × 𝑆))
67 xpexg 7002 . . . . . . . . . . 11 ((𝑆𝑊𝑆𝑊) → (𝑆 × 𝑆) ∈ V)
683, 3, 67syl2anc 694 . . . . . . . . . 10 (𝜑 → (𝑆 × 𝑆) ∈ V)
69 fnex 6522 . . . . . . . . . 10 ((𝐻 Fn (𝑆 × 𝑆) ∧ (𝑆 × 𝑆) ∈ V) → 𝐻 ∈ V)
7066, 68, 69syl2anc 694 . . . . . . . . 9 (𝜑𝐻 ∈ V)
7170adantr 480 . . . . . . . 8 ((𝜑 ∧ ¬ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → 𝐻 ∈ V)
72 fvex 6239 . . . . . . . . . 10 (Base‘(𝐶s 𝑆)) ∈ V
7372inex2 4833 . . . . . . . . 9 (𝑇 ∩ (Base‘(𝐶s 𝑆))) ∈ V
7473a1i 11 . . . . . . . 8 ((𝜑 ∧ ¬ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → (𝑇 ∩ (Base‘(𝐶s 𝑆))) ∈ V)
75 fvex 6239 . . . . . . . . 9 (Hom ‘ndx) ∈ V
76 fvex 6239 . . . . . . . . 9 (Base‘ndx) ∈ V
7775, 76setscom 15950 . . . . . . . 8 ((((𝐶s 𝑆) ∈ V ∧ (Hom ‘ndx) ≠ (Base‘ndx)) ∧ (𝐻 ∈ V ∧ (𝑇 ∩ (Base‘(𝐶s 𝑆))) ∈ V)) → (((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) sSet ⟨(Base‘ndx), (𝑇 ∩ (Base‘(𝐶s 𝑆)))⟩) = (((𝐶s 𝑆) sSet ⟨(Base‘ndx), (𝑇 ∩ (Base‘(𝐶s 𝑆)))⟩) sSet ⟨(Hom ‘ndx), 𝐻⟩))
7863, 65, 71, 74, 77syl22anc 1367 . . . . . . 7 ((𝜑 ∧ ¬ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → (((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) sSet ⟨(Base‘ndx), (𝑇 ∩ (Base‘(𝐶s 𝑆)))⟩) = (((𝐶s 𝑆) sSet ⟨(Base‘ndx), (𝑇 ∩ (Base‘(𝐶s 𝑆)))⟩) sSet ⟨(Hom ‘ndx), 𝐻⟩))
79 eqid 2651 . . . . . . . . . . 11 ((𝐶s 𝑆) ↾s 𝑇) = ((𝐶s 𝑆) ↾s 𝑇)
80 eqid 2651 . . . . . . . . . . 11 (Base‘(𝐶s 𝑆)) = (Base‘(𝐶s 𝑆))
8179, 80ressval2 15976 . . . . . . . . . 10 ((¬ (Base‘(𝐶s 𝑆)) ⊆ 𝑇 ∧ (𝐶s 𝑆) ∈ V ∧ 𝑇 ∈ V) → ((𝐶s 𝑆) ↾s 𝑇) = ((𝐶s 𝑆) sSet ⟨(Base‘ndx), (𝑇 ∩ (Base‘(𝐶s 𝑆)))⟩))
8258, 63, 60, 81syl3anc 1366 . . . . . . . . 9 ((𝜑 ∧ ¬ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → ((𝐶s 𝑆) ↾s 𝑇) = ((𝐶s 𝑆) sSet ⟨(Base‘ndx), (𝑇 ∩ (Base‘(𝐶s 𝑆)))⟩))
833adantr 480 . . . . . . . . . 10 ((𝜑 ∧ ¬ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → 𝑆𝑊)
844adantr 480 . . . . . . . . . 10 ((𝜑 ∧ ¬ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → 𝑇𝑆)
85 ressabs 15986 . . . . . . . . . 10 ((𝑆𝑊𝑇𝑆) → ((𝐶s 𝑆) ↾s 𝑇) = (𝐶s 𝑇))
8683, 84, 85syl2anc 694 . . . . . . . . 9 ((𝜑 ∧ ¬ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → ((𝐶s 𝑆) ↾s 𝑇) = (𝐶s 𝑇))
8782, 86eqtr3d 2687 . . . . . . . 8 ((𝜑 ∧ ¬ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → ((𝐶s 𝑆) sSet ⟨(Base‘ndx), (𝑇 ∩ (Base‘(𝐶s 𝑆)))⟩) = (𝐶s 𝑇))
8887oveq1d 6705 . . . . . . 7 ((𝜑 ∧ ¬ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → (((𝐶s 𝑆) sSet ⟨(Base‘ndx), (𝑇 ∩ (Base‘(𝐶s 𝑆)))⟩) sSet ⟨(Hom ‘ndx), 𝐻⟩) = ((𝐶s 𝑇) sSet ⟨(Hom ‘ndx), 𝐻⟩))
8962, 78, 883eqtrd 2689 . . . . . 6 ((𝜑 ∧ ¬ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → (((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) ↾s 𝑇) = ((𝐶s 𝑇) sSet ⟨(Hom ‘ndx), 𝐻⟩))
9089oveq1d 6705 . . . . 5 ((𝜑 ∧ ¬ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → ((((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) ↾s 𝑇) sSet ⟨(Hom ‘ndx), 𝐽⟩) = (((𝐶s 𝑇) sSet ⟨(Hom ‘ndx), 𝐻⟩) sSet ⟨(Hom ‘ndx), 𝐽⟩))
91 ovex 6718 . . . . . 6 (𝐶s 𝑇) ∈ V
9232adantr 480 . . . . . 6 ((𝜑 ∧ ¬ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → 𝐽 ∈ V)
93 setsabs 15949 . . . . . 6 (((𝐶s 𝑇) ∈ V ∧ 𝐽 ∈ V) → (((𝐶s 𝑇) sSet ⟨(Hom ‘ndx), 𝐻⟩) sSet ⟨(Hom ‘ndx), 𝐽⟩) = ((𝐶s 𝑇) sSet ⟨(Hom ‘ndx), 𝐽⟩))
9491, 92, 93sylancr 696 . . . . 5 ((𝜑 ∧ ¬ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → (((𝐶s 𝑇) sSet ⟨(Hom ‘ndx), 𝐻⟩) sSet ⟨(Hom ‘ndx), 𝐽⟩) = ((𝐶s 𝑇) sSet ⟨(Hom ‘ndx), 𝐽⟩))
9590, 94eqtrd 2685 . . . 4 ((𝜑 ∧ ¬ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → ((((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) ↾s 𝑇) sSet ⟨(Hom ‘ndx), 𝐽⟩) = ((𝐶s 𝑇) sSet ⟨(Hom ‘ndx), 𝐽⟩))
9657, 95pm2.61dan 849 . . 3 (𝜑 → ((((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) ↾s 𝑇) sSet ⟨(Hom ‘ndx), 𝐽⟩) = ((𝐶s 𝑇) sSet ⟨(Hom ‘ndx), 𝐽⟩))
977, 96eqtrd 2685 . 2 (𝜑 → (((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) ↾cat 𝐽) = ((𝐶s 𝑇) sSet ⟨(Hom ‘ndx), 𝐽⟩))
98 eqid 2651 . . . 4 (𝐶cat 𝐻) = (𝐶cat 𝐻)
99 rescabs.c . . . 4 (𝜑𝐶𝑉)
10098, 99, 3, 66rescval2 16535 . . 3 (𝜑 → (𝐶cat 𝐻) = ((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩))
101100oveq1d 6705 . 2 (𝜑 → ((𝐶cat 𝐻) ↾cat 𝐽) = (((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) ↾cat 𝐽))
102 eqid 2651 . . 3 (𝐶cat 𝐽) = (𝐶cat 𝐽)
103102, 99, 5, 6rescval2 16535 . 2 (𝜑 → (𝐶cat 𝐽) = ((𝐶s 𝑇) sSet ⟨(Hom ‘ndx), 𝐽⟩))
10497, 101, 1033eqtr4d 2695 1 (𝜑 → ((𝐶cat 𝐻) ↾cat 𝐽) = (𝐶cat 𝐽))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383   = wceq 1523  wcel 2030  wne 2823  Vcvv 3231  cin 3606  wss 3607  cop 4216   × cxp 5141   Fn wfn 5921  cfv 5926  (class class class)co 6690  1c1 9975  4c4 11110  cdc 11531  ndxcnx 15901   sSet csts 15902  Basecbs 15904  s cress 15905  Hom chom 15999  cat cresc 16515
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-hom 16013  df-resc 16518
This theorem is referenced by:  subsubc  16560  fldc  42408  fldcALTV  42426
  Copyright terms: Public domain W3C validator