MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  revs1 Structured version   Visualization version   GIF version

Theorem revs1 14127
Description: Singleton words are their own reverses. (Contributed by Stefan O'Rear, 26-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.)
Assertion
Ref Expression
revs1 (reverse‘⟨“𝑆”⟩) = ⟨“𝑆”⟩

Proof of Theorem revs1
StepHypRef Expression
1 s1cli 13959 . . . . 5 ⟨“𝑆”⟩ ∈ Word V
2 s1len 13960 . . . . . . 7 (♯‘⟨“𝑆”⟩) = 1
3 1nn 11649 . . . . . . 7 1 ∈ ℕ
42, 3eqeltri 2909 . . . . . 6 (♯‘⟨“𝑆”⟩) ∈ ℕ
5 lbfzo0 13078 . . . . . 6 (0 ∈ (0..^(♯‘⟨“𝑆”⟩)) ↔ (♯‘⟨“𝑆”⟩) ∈ ℕ)
64, 5mpbir 233 . . . . 5 0 ∈ (0..^(♯‘⟨“𝑆”⟩))
7 revfv 14125 . . . . 5 ((⟨“𝑆”⟩ ∈ Word V ∧ 0 ∈ (0..^(♯‘⟨“𝑆”⟩))) → ((reverse‘⟨“𝑆”⟩)‘0) = (⟨“𝑆”⟩‘(((♯‘⟨“𝑆”⟩) − 1) − 0)))
81, 6, 7mp2an 690 . . . 4 ((reverse‘⟨“𝑆”⟩)‘0) = (⟨“𝑆”⟩‘(((♯‘⟨“𝑆”⟩) − 1) − 0))
92oveq1i 7166 . . . . . . . . 9 ((♯‘⟨“𝑆”⟩) − 1) = (1 − 1)
10 1m1e0 11710 . . . . . . . . 9 (1 − 1) = 0
119, 10eqtri 2844 . . . . . . . 8 ((♯‘⟨“𝑆”⟩) − 1) = 0
1211oveq1i 7166 . . . . . . 7 (((♯‘⟨“𝑆”⟩) − 1) − 0) = (0 − 0)
13 0m0e0 11758 . . . . . . 7 (0 − 0) = 0
1412, 13eqtri 2844 . . . . . 6 (((♯‘⟨“𝑆”⟩) − 1) − 0) = 0
1514fveq2i 6673 . . . . 5 (⟨“𝑆”⟩‘(((♯‘⟨“𝑆”⟩) − 1) − 0)) = (⟨“𝑆”⟩‘0)
16 ids1 13951 . . . . . . 7 ⟨“𝑆”⟩ = ⟨“( I ‘𝑆)”⟩
1716fveq1i 6671 . . . . . 6 (⟨“𝑆”⟩‘0) = (⟨“( I ‘𝑆)”⟩‘0)
18 fvex 6683 . . . . . . 7 ( I ‘𝑆) ∈ V
19 s1fv 13964 . . . . . . 7 (( I ‘𝑆) ∈ V → (⟨“( I ‘𝑆)”⟩‘0) = ( I ‘𝑆))
2018, 19ax-mp 5 . . . . . 6 (⟨“( I ‘𝑆)”⟩‘0) = ( I ‘𝑆)
2117, 20eqtri 2844 . . . . 5 (⟨“𝑆”⟩‘0) = ( I ‘𝑆)
2215, 21eqtri 2844 . . . 4 (⟨“𝑆”⟩‘(((♯‘⟨“𝑆”⟩) − 1) − 0)) = ( I ‘𝑆)
238, 22eqtri 2844 . . 3 ((reverse‘⟨“𝑆”⟩)‘0) = ( I ‘𝑆)
24 s1eq 13954 . . 3 (((reverse‘⟨“𝑆”⟩)‘0) = ( I ‘𝑆) → ⟨“((reverse‘⟨“𝑆”⟩)‘0)”⟩ = ⟨“( I ‘𝑆)”⟩)
2523, 24ax-mp 5 . 2 ⟨“((reverse‘⟨“𝑆”⟩)‘0)”⟩ = ⟨“( I ‘𝑆)”⟩
26 revcl 14123 . . . 4 (⟨“𝑆”⟩ ∈ Word V → (reverse‘⟨“𝑆”⟩) ∈ Word V)
271, 26ax-mp 5 . . 3 (reverse‘⟨“𝑆”⟩) ∈ Word V
28 revlen 14124 . . . . 5 (⟨“𝑆”⟩ ∈ Word V → (♯‘(reverse‘⟨“𝑆”⟩)) = (♯‘⟨“𝑆”⟩))
291, 28ax-mp 5 . . . 4 (♯‘(reverse‘⟨“𝑆”⟩)) = (♯‘⟨“𝑆”⟩)
3029, 2eqtri 2844 . . 3 (♯‘(reverse‘⟨“𝑆”⟩)) = 1
31 eqs1 13966 . . 3 (((reverse‘⟨“𝑆”⟩) ∈ Word V ∧ (♯‘(reverse‘⟨“𝑆”⟩)) = 1) → (reverse‘⟨“𝑆”⟩) = ⟨“((reverse‘⟨“𝑆”⟩)‘0)”⟩)
3227, 30, 31mp2an 690 . 2 (reverse‘⟨“𝑆”⟩) = ⟨“((reverse‘⟨“𝑆”⟩)‘0)”⟩
3325, 32, 163eqtr4i 2854 1 (reverse‘⟨“𝑆”⟩) = ⟨“𝑆”⟩
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wcel 2114  Vcvv 3494   I cid 5459  cfv 6355  (class class class)co 7156  0cc0 10537  1c1 10538  cmin 10870  cn 11638  ..^cfzo 13034  chash 13691  Word cword 13862  ⟨“cs1 13949  reversecreverse 14120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-n0 11899  df-z 11983  df-uz 12245  df-fz 12894  df-fzo 13035  df-hash 13692  df-word 13863  df-s1 13950  df-reverse 14121
This theorem is referenced by:  gsumwrev  18494  efginvrel2  18853  vrgpinv  18895
  Copyright terms: Public domain W3C validator