Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rmyabs Structured version   Visualization version   GIF version

Theorem rmyabs 36339
Description: Yrm commutes with abs. (Contributed by Stefan O'Rear, 26-Sep-2014.)
Assertion
Ref Expression
rmyabs ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℤ) → (abs‘(𝐴 Yrm 𝐵)) = (𝐴 Yrm (abs‘𝐵)))

Proof of Theorem rmyabs
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frmy 36293 . . . 4 Yrm :((ℤ‘2) × ℤ)⟶ℤ
21fovcl 6641 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑎 ∈ ℤ) → (𝐴 Yrm 𝑎) ∈ ℤ)
32zred 11314 . 2 ((𝐴 ∈ (ℤ‘2) ∧ 𝑎 ∈ ℤ) → (𝐴 Yrm 𝑎) ∈ ℝ)
4 simp1 1053 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑎 ∈ ℤ ∧ 0 ≤ 𝑎) → 𝐴 ∈ (ℤ‘2))
5 elnn0z 11223 . . . . . 6 (𝑎 ∈ ℕ0 ↔ (𝑎 ∈ ℤ ∧ 0 ≤ 𝑎))
65biimpri 216 . . . . 5 ((𝑎 ∈ ℤ ∧ 0 ≤ 𝑎) → 𝑎 ∈ ℕ0)
763adant1 1071 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑎 ∈ ℤ ∧ 0 ≤ 𝑎) → 𝑎 ∈ ℕ0)
8 rmxypos 36328 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑎 ∈ ℕ0) → (0 < (𝐴 Xrm 𝑎) ∧ 0 ≤ (𝐴 Yrm 𝑎)))
94, 7, 8syl2anc 690 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑎 ∈ ℤ ∧ 0 ≤ 𝑎) → (0 < (𝐴 Xrm 𝑎) ∧ 0 ≤ (𝐴 Yrm 𝑎)))
109simprd 477 . 2 ((𝐴 ∈ (ℤ‘2) ∧ 𝑎 ∈ ℤ ∧ 0 ≤ 𝑎) → 0 ≤ (𝐴 Yrm 𝑎))
11 rmyneg 36307 . 2 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℤ) → (𝐴 Yrm -𝑏) = -(𝐴 Yrm 𝑏))
12 oveq2 6535 . 2 (𝑎 = 𝑏 → (𝐴 Yrm 𝑎) = (𝐴 Yrm 𝑏))
13 oveq2 6535 . 2 (𝑎 = -𝑏 → (𝐴 Yrm 𝑎) = (𝐴 Yrm -𝑏))
14 oveq2 6535 . 2 (𝑎 = 𝐵 → (𝐴 Yrm 𝑎) = (𝐴 Yrm 𝐵))
15 oveq2 6535 . 2 (𝑎 = (abs‘𝐵) → (𝐴 Yrm 𝑎) = (𝐴 Yrm (abs‘𝐵)))
163, 10, 11, 12, 13, 14, 15oddcomabszz 36323 1 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℤ) → (abs‘(𝐴 Yrm 𝐵)) = (𝐴 Yrm (abs‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1030   = wceq 1474  wcel 1976   class class class wbr 4577  cfv 5790  (class class class)co 6527  0cc0 9792   < clt 9930  cle 9931  -cneg 10118  2c2 10917  0cn0 11139  cz 11210  cuz 11519  abscabs 13768   Xrm crmx 36278   Yrm crmy 36279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-inf2 8398  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869  ax-pre-sup 9870  ax-addf 9871  ax-mulf 9872
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-iin 4452  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-se 4988  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-isom 5799  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-of 6772  df-om 6935  df-1st 7036  df-2nd 7037  df-supp 7160  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-1o 7424  df-2o 7425  df-oadd 7428  df-omul 7429  df-er 7606  df-map 7723  df-pm 7724  df-ixp 7772  df-en 7819  df-dom 7820  df-sdom 7821  df-fin 7822  df-fsupp 8136  df-fi 8177  df-sup 8208  df-inf 8209  df-oi 8275  df-card 8625  df-acn 8628  df-cda 8850  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-div 10534  df-nn 10868  df-2 10926  df-3 10927  df-4 10928  df-5 10929  df-6 10930  df-7 10931  df-8 10932  df-9 10933  df-n0 11140  df-z 11211  df-dec 11326  df-uz 11520  df-q 11621  df-rp 11665  df-xneg 11778  df-xadd 11779  df-xmul 11780  df-ioo 12006  df-ioc 12007  df-ico 12008  df-icc 12009  df-fz 12153  df-fzo 12290  df-fl 12410  df-mod 12486  df-seq 12619  df-exp 12678  df-fac 12878  df-bc 12907  df-hash 12935  df-shft 13601  df-cj 13633  df-re 13634  df-im 13635  df-sqrt 13769  df-abs 13770  df-limsup 13996  df-clim 14013  df-rlim 14014  df-sum 14211  df-ef 14583  df-sin 14585  df-cos 14586  df-pi 14588  df-dvds 14768  df-gcd 15001  df-numer 15227  df-denom 15228  df-struct 15643  df-ndx 15644  df-slot 15645  df-base 15646  df-sets 15647  df-ress 15648  df-plusg 15727  df-mulr 15728  df-starv 15729  df-sca 15730  df-vsca 15731  df-ip 15732  df-tset 15733  df-ple 15734  df-ds 15737  df-unif 15738  df-hom 15739  df-cco 15740  df-rest 15852  df-topn 15853  df-0g 15871  df-gsum 15872  df-topgen 15873  df-pt 15874  df-prds 15877  df-xrs 15931  df-qtop 15936  df-imas 15937  df-xps 15939  df-mre 16015  df-mrc 16016  df-acs 16018  df-mgm 17011  df-sgrp 17053  df-mnd 17064  df-submnd 17105  df-mulg 17310  df-cntz 17519  df-cmn 17964  df-psmet 19505  df-xmet 19506  df-met 19507  df-bl 19508  df-mopn 19509  df-fbas 19510  df-fg 19511  df-cnfld 19514  df-top 20463  df-bases 20464  df-topon 20465  df-topsp 20466  df-cld 20575  df-ntr 20576  df-cls 20577  df-nei 20654  df-lp 20692  df-perf 20693  df-cn 20783  df-cnp 20784  df-haus 20871  df-tx 21117  df-hmeo 21310  df-fil 21402  df-fm 21494  df-flim 21495  df-flf 21496  df-xms 21876  df-ms 21877  df-tms 21878  df-cncf 22420  df-limc 23353  df-dv 23354  df-log 24024  df-squarenn 36219  df-pell1qr 36220  df-pell14qr 36221  df-pell1234qr 36222  df-pellfund 36223  df-rmx 36280  df-rmy 36281
This theorem is referenced by:  jm2.19  36374  jm2.26lem3  36382
  Copyright terms: Public domain W3C validator