Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0lempt Structured version   Visualization version   GIF version

Theorem sge0lempt 41015
Description: If all of the terms of sums compare, so do the sums. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0lempt.xph 𝑥𝜑
sge0lempt.a (𝜑𝐴𝑉)
sge0lempt.b ((𝜑𝑥𝐴) → 𝐵 ∈ (0[,]+∞))
sge0lempt.c ((𝜑𝑥𝐴) → 𝐶 ∈ (0[,]+∞))
sge0lempt.le ((𝜑𝑥𝐴) → 𝐵𝐶)
Assertion
Ref Expression
sge0lempt (𝜑 → (Σ^‘(𝑥𝐴𝐵)) ≤ (Σ^‘(𝑥𝐴𝐶)))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐶(𝑥)   𝑉(𝑥)

Proof of Theorem sge0lempt
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 sge0lempt.a . 2 (𝜑𝐴𝑉)
2 sge0lempt.xph . . 3 𝑥𝜑
3 sge0lempt.b . . 3 ((𝜑𝑥𝐴) → 𝐵 ∈ (0[,]+∞))
4 eqid 2692 . . 3 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
52, 3, 4fmptdf 6470 . 2 (𝜑 → (𝑥𝐴𝐵):𝐴⟶(0[,]+∞))
6 sge0lempt.c . . 3 ((𝜑𝑥𝐴) → 𝐶 ∈ (0[,]+∞))
7 eqid 2692 . . 3 (𝑥𝐴𝐶) = (𝑥𝐴𝐶)
82, 6, 7fmptdf 6470 . 2 (𝜑 → (𝑥𝐴𝐶):𝐴⟶(0[,]+∞))
9 nfv 1924 . . . . . 6 𝑥 𝑦𝐴
102, 9nfan 1909 . . . . 5 𝑥(𝜑𝑦𝐴)
11 nfcv 2834 . . . . . . 7 𝑥𝑦
1211nfcsb1 3622 . . . . . 6 𝑥𝑦 / 𝑥𝐵
13 nfcv 2834 . . . . . 6 𝑥
1411nfcsb1 3622 . . . . . 6 𝑥𝑦 / 𝑥𝐶
1512, 13, 14nfbr 4775 . . . . 5 𝑥𝑦 / 𝑥𝐵𝑦 / 𝑥𝐶
1610, 15nfim 1906 . . . 4 𝑥((𝜑𝑦𝐴) → 𝑦 / 𝑥𝐵𝑦 / 𝑥𝐶)
17 eleq1 2759 . . . . . 6 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
1817anbi2d 742 . . . . 5 (𝑥 = 𝑦 → ((𝜑𝑥𝐴) ↔ (𝜑𝑦𝐴)))
19 csbeq1a 3616 . . . . . 6 (𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵)
20 csbeq1a 3616 . . . . . 6 (𝑥 = 𝑦𝐶 = 𝑦 / 𝑥𝐶)
2119, 20breq12d 4741 . . . . 5 (𝑥 = 𝑦 → (𝐵𝐶𝑦 / 𝑥𝐵𝑦 / 𝑥𝐶))
2218, 21imbi12d 333 . . . 4 (𝑥 = 𝑦 → (((𝜑𝑥𝐴) → 𝐵𝐶) ↔ ((𝜑𝑦𝐴) → 𝑦 / 𝑥𝐵𝑦 / 𝑥𝐶)))
23 sge0lempt.le . . . 4 ((𝜑𝑥𝐴) → 𝐵𝐶)
2416, 22, 23chvar 2339 . . 3 ((𝜑𝑦𝐴) → 𝑦 / 𝑥𝐵𝑦 / 𝑥𝐶)
25 simpr 479 . . . . 5 ((𝜑𝑦𝐴) → 𝑦𝐴)
26 simpl 474 . . . . . 6 ((𝜑𝑦𝐴) → 𝜑)
2712nfel1 2849 . . . . . . . 8 𝑥𝑦 / 𝑥𝐵 ∈ (0[,]+∞)
2810, 27nfim 1906 . . . . . . 7 𝑥((𝜑𝑦𝐴) → 𝑦 / 𝑥𝐵 ∈ (0[,]+∞))
2919eleq1d 2756 . . . . . . . 8 (𝑥 = 𝑦 → (𝐵 ∈ (0[,]+∞) ↔ 𝑦 / 𝑥𝐵 ∈ (0[,]+∞)))
3018, 29imbi12d 333 . . . . . . 7 (𝑥 = 𝑦 → (((𝜑𝑥𝐴) → 𝐵 ∈ (0[,]+∞)) ↔ ((𝜑𝑦𝐴) → 𝑦 / 𝑥𝐵 ∈ (0[,]+∞))))
3128, 30, 3chvar 2339 . . . . . 6 ((𝜑𝑦𝐴) → 𝑦 / 𝑥𝐵 ∈ (0[,]+∞))
3226, 25, 31syl2anc 696 . . . . 5 ((𝜑𝑦𝐴) → 𝑦 / 𝑥𝐵 ∈ (0[,]+∞))
3311, 12, 19, 4fvmptf 6383 . . . . 5 ((𝑦𝐴𝑦 / 𝑥𝐵 ∈ (0[,]+∞)) → ((𝑥𝐴𝐵)‘𝑦) = 𝑦 / 𝑥𝐵)
3425, 32, 33syl2anc 696 . . . 4 ((𝜑𝑦𝐴) → ((𝑥𝐴𝐵)‘𝑦) = 𝑦 / 𝑥𝐵)
35 nfcv 2834 . . . . . . . . 9 𝑥(0[,]+∞)
3614, 35nfel 2847 . . . . . . . 8 𝑥𝑦 / 𝑥𝐶 ∈ (0[,]+∞)
3710, 36nfim 1906 . . . . . . 7 𝑥((𝜑𝑦𝐴) → 𝑦 / 𝑥𝐶 ∈ (0[,]+∞))
3820eleq1d 2756 . . . . . . . 8 (𝑥 = 𝑦 → (𝐶 ∈ (0[,]+∞) ↔ 𝑦 / 𝑥𝐶 ∈ (0[,]+∞)))
3918, 38imbi12d 333 . . . . . . 7 (𝑥 = 𝑦 → (((𝜑𝑥𝐴) → 𝐶 ∈ (0[,]+∞)) ↔ ((𝜑𝑦𝐴) → 𝑦 / 𝑥𝐶 ∈ (0[,]+∞))))
4037, 39, 6chvar 2339 . . . . . 6 ((𝜑𝑦𝐴) → 𝑦 / 𝑥𝐶 ∈ (0[,]+∞))
4126, 25, 40syl2anc 696 . . . . 5 ((𝜑𝑦𝐴) → 𝑦 / 𝑥𝐶 ∈ (0[,]+∞))
4211, 14, 20, 7fvmptf 6383 . . . . 5 ((𝑦𝐴𝑦 / 𝑥𝐶 ∈ (0[,]+∞)) → ((𝑥𝐴𝐶)‘𝑦) = 𝑦 / 𝑥𝐶)
4325, 41, 42syl2anc 696 . . . 4 ((𝜑𝑦𝐴) → ((𝑥𝐴𝐶)‘𝑦) = 𝑦 / 𝑥𝐶)
4434, 43breq12d 4741 . . 3 ((𝜑𝑦𝐴) → (((𝑥𝐴𝐵)‘𝑦) ≤ ((𝑥𝐴𝐶)‘𝑦) ↔ 𝑦 / 𝑥𝐵𝑦 / 𝑥𝐶))
4524, 44mpbird 247 . 2 ((𝜑𝑦𝐴) → ((𝑥𝐴𝐵)‘𝑦) ≤ ((𝑥𝐴𝐶)‘𝑦))
461, 5, 8, 45sge0le 41012 1 (𝜑 → (Σ^‘(𝑥𝐴𝐵)) ≤ (Σ^‘(𝑥𝐴𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1564  wnf 1789  wcel 2071  csb 3607   class class class wbr 4728  cmpt 4805  cfv 5969  (class class class)co 6733  0cc0 10017  +∞cpnf 10152  cle 10156  [,]cicc 12260  Σ^csumge0 40967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1818  ax-5 1920  ax-6 1986  ax-7 2022  ax-8 2073  ax-9 2080  ax-10 2100  ax-11 2115  ax-12 2128  ax-13 2323  ax-ext 2672  ax-rep 4847  ax-sep 4857  ax-nul 4865  ax-pow 4916  ax-pr 4979  ax-un 7034  ax-inf2 8619  ax-cnex 10073  ax-resscn 10074  ax-1cn 10075  ax-icn 10076  ax-addcl 10077  ax-addrcl 10078  ax-mulcl 10079  ax-mulrcl 10080  ax-mulcom 10081  ax-addass 10082  ax-mulass 10083  ax-distr 10084  ax-i2m1 10085  ax-1ne0 10086  ax-1rid 10087  ax-rnegex 10088  ax-rrecex 10089  ax-cnre 10090  ax-pre-lttri 10091  ax-pre-lttrn 10092  ax-pre-ltadd 10093  ax-pre-mulgt0 10094  ax-pre-sup 10095
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1567  df-fal 1570  df-ex 1786  df-nf 1791  df-sb 1979  df-eu 2543  df-mo 2544  df-clab 2679  df-cleq 2685  df-clel 2688  df-nfc 2823  df-ne 2865  df-nel 2968  df-ral 2987  df-rex 2988  df-reu 2989  df-rmo 2990  df-rab 2991  df-v 3274  df-sbc 3510  df-csb 3608  df-dif 3651  df-un 3653  df-in 3655  df-ss 3662  df-pss 3664  df-nul 3992  df-if 4163  df-pw 4236  df-sn 4254  df-pr 4256  df-tp 4258  df-op 4260  df-uni 4513  df-int 4552  df-iun 4598  df-br 4729  df-opab 4789  df-mpt 4806  df-tr 4829  df-id 5096  df-eprel 5101  df-po 5107  df-so 5108  df-fr 5145  df-se 5146  df-we 5147  df-xp 5192  df-rel 5193  df-cnv 5194  df-co 5195  df-dm 5196  df-rn 5197  df-res 5198  df-ima 5199  df-pred 5761  df-ord 5807  df-on 5808  df-lim 5809  df-suc 5810  df-iota 5932  df-fun 5971  df-fn 5972  df-f 5973  df-f1 5974  df-fo 5975  df-f1o 5976  df-fv 5977  df-isom 5978  df-riota 6694  df-ov 6736  df-oprab 6737  df-mpt2 6738  df-om 7151  df-1st 7253  df-2nd 7254  df-wrecs 7495  df-recs 7556  df-rdg 7594  df-1o 7648  df-oadd 7652  df-er 7830  df-en 8041  df-dom 8042  df-sdom 8043  df-fin 8044  df-sup 8432  df-oi 8499  df-card 8846  df-pnf 10157  df-mnf 10158  df-xr 10159  df-ltxr 10160  df-le 10161  df-sub 10349  df-neg 10350  df-div 10766  df-nn 11102  df-2 11160  df-3 11161  df-n0 11374  df-z 11459  df-uz 11769  df-rp 11915  df-ico 12263  df-icc 12264  df-fz 12409  df-fzo 12549  df-seq 12885  df-exp 12944  df-hash 13201  df-cj 13927  df-re 13928  df-im 13929  df-sqrt 14063  df-abs 14064  df-clim 14307  df-sum 14505  df-sumge0 40968
This theorem is referenced by:  sge0iunmptlemre  41020  sge0xadd  41040  meaiunlelem  41073  hoicvrrex  41161  ovnsubaddlem1  41175  sge0hsphoire  41194  hoidmv1lelem1  41196  hoidmv1lelem2  41197  hoidmv1lelem3  41198  hoidmvlelem1  41200  hoidmvlelem2  41201  hoidmvlelem4  41203  hspmbllem2  41232  ovolval5lem1  41257
  Copyright terms: Public domain W3C validator