Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hoidmv1lelem3 Structured version   Visualization version   GIF version

Theorem hoidmv1lelem3 40144
Description: The dimensional volume of a 1-dimensional half-open interval is less than or equal the generalized sum of the dimensional volumes of countable half-open intervals that cover it. This is the non-empty, finite generalized sum, sub case in Lemma 114B of [Fremlin1] p. 23. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
Hypotheses
Ref Expression
hoidmv1lelem3.a (𝜑𝐴 ∈ ℝ)
hoidmv1lelem3.b (𝜑𝐵 ∈ ℝ)
hoidmv1lelem3.l (𝜑𝐴 < 𝐵)
hoidmv1lelem3.c (𝜑𝐶:ℕ⟶ℝ)
hoidmv1lelem3.d (𝜑𝐷:ℕ⟶ℝ)
hoidmv1lelem3.x (𝜑 → (𝐴[,)𝐵) ⊆ 𝑗 ∈ ℕ ((𝐶𝑗)[,)(𝐷𝑗)))
hoidmv1lelem3.r (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)(𝐷𝑗))))) ∈ ℝ)
hoidmv1lelem3.u 𝑈 = {𝑧 ∈ (𝐴[,]𝐵) ∣ (𝑧𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)))))}
hoidmv1lelem3.s 𝑆 = sup(𝑈, ℝ, < )
Assertion
Ref Expression
hoidmv1lelem3 (𝜑 → (𝐵𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)(𝐷𝑗))))))
Distinct variable groups:   𝐴,𝑗,𝑧   𝐵,𝑗,𝑧   𝐶,𝑗,𝑧   𝐷,𝑗,𝑧   𝑆,𝑗,𝑧   𝑈,𝑗,𝑧   𝜑,𝑗,𝑧

Proof of Theorem hoidmv1lelem3
Dummy variables 𝑦 𝑖 𝑢 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hoidmv1lelem3.b . . 3 (𝜑𝐵 ∈ ℝ)
2 hoidmv1lelem3.a . . 3 (𝜑𝐴 ∈ ℝ)
31, 2resubcld 10418 . 2 (𝜑 → (𝐵𝐴) ∈ ℝ)
4 nnex 10986 . . . . . . 7 ℕ ∈ V
54a1i 11 . . . . . 6 (𝜑 → ℕ ∈ V)
6 icossicc 12218 . . . . . . . 8 (0[,)+∞) ⊆ (0[,]+∞)
7 0xr 10046 . . . . . . . . . 10 0 ∈ ℝ*
87a1i 11 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → 0 ∈ ℝ*)
9 pnfxr 10052 . . . . . . . . . 10 +∞ ∈ ℝ*
109a1i 11 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → +∞ ∈ ℝ*)
11 hoidmv1lelem3.c . . . . . . . . . . . 12 (𝜑𝐶:ℕ⟶ℝ)
1211ffvelrnda 6325 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → (𝐶𝑗) ∈ ℝ)
13 hoidmv1lelem3.d . . . . . . . . . . . . 13 (𝜑𝐷:ℕ⟶ℝ)
1413ffvelrnda 6325 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → (𝐷𝑗) ∈ ℝ)
151adantr 481 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → 𝐵 ∈ ℝ)
1614, 15ifcld 4109 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵) ∈ ℝ)
17 volicore 40132 . . . . . . . . . . 11 (((𝐶𝑗) ∈ ℝ ∧ if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵) ∈ ℝ) → (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵))) ∈ ℝ)
1812, 16, 17syl2anc 692 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵))) ∈ ℝ)
1918rexrd 10049 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵))) ∈ ℝ*)
2016rexrd 10049 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵) ∈ ℝ*)
21 icombl 23272 . . . . . . . . . . 11 (((𝐶𝑗) ∈ ℝ ∧ if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵) ∈ ℝ*) → ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵)) ∈ dom vol)
2212, 20, 21syl2anc 692 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵)) ∈ dom vol)
23 volge0 39514 . . . . . . . . . 10 (((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵)) ∈ dom vol → 0 ≤ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵))))
2422, 23syl 17 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → 0 ≤ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵))))
2518ltpnfd 11915 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵))) < +∞)
268, 10, 19, 24, 25elicod 12182 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵))) ∈ (0[,)+∞))
276, 26sseldi 3586 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵))) ∈ (0[,]+∞))
28 eqid 2621 . . . . . . 7 (𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵)))) = (𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵))))
2927, 28fmptd 6351 . . . . . 6 (𝜑 → (𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵)))):ℕ⟶(0[,]+∞))
305, 29sge0xrcl 39939 . . . . 5 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵))))) ∈ ℝ*)
319a1i 11 . . . . 5 (𝜑 → +∞ ∈ ℝ*)
32 hoidmv1lelem3.r . . . . . . 7 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)(𝐷𝑗))))) ∈ ℝ)
3332rexrd 10049 . . . . . 6 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)(𝐷𝑗))))) ∈ ℝ*)
34 nfv 1840 . . . . . . 7 𝑗𝜑
35 volf 23237 . . . . . . . . 9 vol:dom vol⟶(0[,]+∞)
3635a1i 11 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → vol:dom vol⟶(0[,]+∞))
3714rexrd 10049 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → (𝐷𝑗) ∈ ℝ*)
38 icombl 23272 . . . . . . . . 9 (((𝐶𝑗) ∈ ℝ ∧ (𝐷𝑗) ∈ ℝ*) → ((𝐶𝑗)[,)(𝐷𝑗)) ∈ dom vol)
3912, 37, 38syl2anc 692 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → ((𝐶𝑗)[,)(𝐷𝑗)) ∈ dom vol)
4036, 39ffvelrnd 6326 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → (vol‘((𝐶𝑗)[,)(𝐷𝑗))) ∈ (0[,]+∞))
4112rexrd 10049 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → (𝐶𝑗) ∈ ℝ*)
4212leidd 10554 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → (𝐶𝑗) ≤ (𝐶𝑗))
43 min1 11979 . . . . . . . . . 10 (((𝐷𝑗) ∈ ℝ ∧ 𝐵 ∈ ℝ) → if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵) ≤ (𝐷𝑗))
4414, 15, 43syl2anc 692 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵) ≤ (𝐷𝑗))
45 icossico 12201 . . . . . . . . 9 ((((𝐶𝑗) ∈ ℝ* ∧ (𝐷𝑗) ∈ ℝ*) ∧ ((𝐶𝑗) ≤ (𝐶𝑗) ∧ if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵) ≤ (𝐷𝑗))) → ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵)) ⊆ ((𝐶𝑗)[,)(𝐷𝑗)))
4641, 37, 42, 44, 45syl22anc 1324 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵)) ⊆ ((𝐶𝑗)[,)(𝐷𝑗)))
47 volss 23241 . . . . . . . 8 ((((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵)) ∈ dom vol ∧ ((𝐶𝑗)[,)(𝐷𝑗)) ∈ dom vol ∧ ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵)) ⊆ ((𝐶𝑗)[,)(𝐷𝑗))) → (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵))) ≤ (vol‘((𝐶𝑗)[,)(𝐷𝑗))))
4822, 39, 46, 47syl3anc 1323 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵))) ≤ (vol‘((𝐶𝑗)[,)(𝐷𝑗))))
4934, 5, 27, 40, 48sge0lempt 39964 . . . . . 6 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵))))) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)(𝐷𝑗))))))
5032ltpnfd 11915 . . . . . 6 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)(𝐷𝑗))))) < +∞)
5130, 33, 31, 49, 50xrlelttrd 11951 . . . . 5 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵))))) < +∞)
5230, 31, 51xrltned 39072 . . . 4 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵))))) ≠ +∞)
5352neneqd 2795 . . 3 (𝜑 → ¬ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵))))) = +∞)
545, 29sge0repnf 39940 . . 3 (𝜑 → ((Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵))))) ∈ ℝ ↔ ¬ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵))))) = +∞))
5553, 54mpbird 247 . 2 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵))))) ∈ ℝ)
561rexrd 10049 . . . . . . 7 (𝜑𝐵 ∈ ℝ*)
572, 1iccssred 39173 . . . . . . . . 9 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
58 hoidmv1lelem3.u . . . . . . . . . . 11 𝑈 = {𝑧 ∈ (𝐴[,]𝐵) ∣ (𝑧𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)))))}
59 ssrab2 3672 . . . . . . . . . . 11 {𝑧 ∈ (𝐴[,]𝐵) ∣ (𝑧𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)))))} ⊆ (𝐴[,]𝐵)
6058, 59eqsstri 3620 . . . . . . . . . 10 𝑈 ⊆ (𝐴[,]𝐵)
61 hoidmv1lelem3.l . . . . . . . . . . . 12 (𝜑𝐴 < 𝐵)
62 hoidmv1lelem3.s . . . . . . . . . . . 12 𝑆 = sup(𝑈, ℝ, < )
632, 1, 61, 11, 13, 32, 58, 62hoidmv1lelem1 40142 . . . . . . . . . . 11 (𝜑 → (𝑆𝑈𝐴𝑈 ∧ ∃𝑥 ∈ ℝ ∀𝑦𝑈 𝑦𝑥))
6463simp1d 1071 . . . . . . . . . 10 (𝜑𝑆𝑈)
6560, 64sseldi 3586 . . . . . . . . 9 (𝜑𝑆 ∈ (𝐴[,]𝐵))
6657, 65sseldd 3589 . . . . . . . 8 (𝜑𝑆 ∈ ℝ)
6766rexrd 10049 . . . . . . 7 (𝜑𝑆 ∈ ℝ*)
68 simpl 473 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐵𝑆) → 𝜑)
69 simpr 477 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐵𝑆) → ¬ 𝐵𝑆)
7068, 66syl 17 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝐵𝑆) → 𝑆 ∈ ℝ)
7168, 1syl 17 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝐵𝑆) → 𝐵 ∈ ℝ)
7270, 71ltnled 10144 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐵𝑆) → (𝑆 < 𝐵 ↔ ¬ 𝐵𝑆))
7369, 72mpbird 247 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐵𝑆) → 𝑆 < 𝐵)
74 hoidmv1lelem3.x . . . . . . . . . . . . 13 (𝜑 → (𝐴[,)𝐵) ⊆ 𝑗 ∈ ℕ ((𝐶𝑗)[,)(𝐷𝑗)))
7574adantr 481 . . . . . . . . . . . 12 ((𝜑𝑆 < 𝐵) → (𝐴[,)𝐵) ⊆ 𝑗 ∈ ℕ ((𝐶𝑗)[,)(𝐷𝑗)))
762rexrd 10049 . . . . . . . . . . . . . 14 (𝜑𝐴 ∈ ℝ*)
7776adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑆 < 𝐵) → 𝐴 ∈ ℝ*)
7856adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑆 < 𝐵) → 𝐵 ∈ ℝ*)
7967adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑆 < 𝐵) → 𝑆 ∈ ℝ*)
8060, 57syl5ss 3599 . . . . . . . . . . . . . . . 16 (𝜑𝑈 ⊆ ℝ)
81 ne0i 3903 . . . . . . . . . . . . . . . . 17 (𝑆𝑈𝑈 ≠ ∅)
8264, 81syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝑈 ≠ ∅)
8363simp3d 1073 . . . . . . . . . . . . . . . 16 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦𝑈 𝑦𝑥)
8463simp2d 1072 . . . . . . . . . . . . . . . 16 (𝜑𝐴𝑈)
85 suprub 10944 . . . . . . . . . . . . . . . 16 (((𝑈 ⊆ ℝ ∧ 𝑈 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝑈 𝑦𝑥) ∧ 𝐴𝑈) → 𝐴 ≤ sup(𝑈, ℝ, < ))
8680, 82, 83, 84, 85syl31anc 1326 . . . . . . . . . . . . . . 15 (𝜑𝐴 ≤ sup(𝑈, ℝ, < ))
8786, 62syl6breqr 4665 . . . . . . . . . . . . . 14 (𝜑𝐴𝑆)
8887adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑆 < 𝐵) → 𝐴𝑆)
89 simpr 477 . . . . . . . . . . . . 13 ((𝜑𝑆 < 𝐵) → 𝑆 < 𝐵)
9077, 78, 79, 88, 89elicod 12182 . . . . . . . . . . . 12 ((𝜑𝑆 < 𝐵) → 𝑆 ∈ (𝐴[,)𝐵))
9175, 90sseldd 3589 . . . . . . . . . . 11 ((𝜑𝑆 < 𝐵) → 𝑆 𝑗 ∈ ℕ ((𝐶𝑗)[,)(𝐷𝑗)))
92 eliun 4497 . . . . . . . . . . 11 (𝑆 𝑗 ∈ ℕ ((𝐶𝑗)[,)(𝐷𝑗)) ↔ ∃𝑗 ∈ ℕ 𝑆 ∈ ((𝐶𝑗)[,)(𝐷𝑗)))
9391, 92sylib 208 . . . . . . . . . 10 ((𝜑𝑆 < 𝐵) → ∃𝑗 ∈ ℕ 𝑆 ∈ ((𝐶𝑗)[,)(𝐷𝑗)))
942adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑆 < 𝐵) → 𝐴 ∈ ℝ)
95943ad2ant1 1080 . . . . . . . . . . . . 13 (((𝜑𝑆 < 𝐵) ∧ 𝑗 ∈ ℕ ∧ 𝑆 ∈ ((𝐶𝑗)[,)(𝐷𝑗))) → 𝐴 ∈ ℝ)
961adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑆 < 𝐵) → 𝐵 ∈ ℝ)
97963ad2ant1 1080 . . . . . . . . . . . . 13 (((𝜑𝑆 < 𝐵) ∧ 𝑗 ∈ ℕ ∧ 𝑆 ∈ ((𝐶𝑗)[,)(𝐷𝑗))) → 𝐵 ∈ ℝ)
9811adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑆 < 𝐵) → 𝐶:ℕ⟶ℝ)
99983ad2ant1 1080 . . . . . . . . . . . . 13 (((𝜑𝑆 < 𝐵) ∧ 𝑗 ∈ ℕ ∧ 𝑆 ∈ ((𝐶𝑗)[,)(𝐷𝑗))) → 𝐶:ℕ⟶ℝ)
10013adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑆 < 𝐵) → 𝐷:ℕ⟶ℝ)
1011003ad2ant1 1080 . . . . . . . . . . . . 13 (((𝜑𝑆 < 𝐵) ∧ 𝑗 ∈ ℕ ∧ 𝑆 ∈ ((𝐶𝑗)[,)(𝐷𝑗))) → 𝐷:ℕ⟶ℝ)
102 fveq2 6158 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = 𝑗 → (𝐶𝑖) = (𝐶𝑗))
103 fveq2 6158 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = 𝑗 → (𝐷𝑖) = (𝐷𝑗))
104102, 103oveq12d 6633 . . . . . . . . . . . . . . . . . . 19 (𝑖 = 𝑗 → ((𝐶𝑖)[,)(𝐷𝑖)) = ((𝐶𝑗)[,)(𝐷𝑗)))
105104fveq2d 6162 . . . . . . . . . . . . . . . . . 18 (𝑖 = 𝑗 → (vol‘((𝐶𝑖)[,)(𝐷𝑖))) = (vol‘((𝐶𝑗)[,)(𝐷𝑗))))
106105cbvmptv 4720 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ ℕ ↦ (vol‘((𝐶𝑖)[,)(𝐷𝑖)))) = (𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)(𝐷𝑗))))
107106fveq2i 6161 . . . . . . . . . . . . . . . 16 ^‘(𝑖 ∈ ℕ ↦ (vol‘((𝐶𝑖)[,)(𝐷𝑖))))) = (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)(𝐷𝑗)))))
108107, 32syl5eqel 2702 . . . . . . . . . . . . . . 15 (𝜑 → (Σ^‘(𝑖 ∈ ℕ ↦ (vol‘((𝐶𝑖)[,)(𝐷𝑖))))) ∈ ℝ)
109108adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑆 < 𝐵) → (Σ^‘(𝑖 ∈ ℕ ↦ (vol‘((𝐶𝑖)[,)(𝐷𝑖))))) ∈ ℝ)
1101093ad2ant1 1080 . . . . . . . . . . . . 13 (((𝜑𝑆 < 𝐵) ∧ 𝑗 ∈ ℕ ∧ 𝑆 ∈ ((𝐶𝑗)[,)(𝐷𝑗))) → (Σ^‘(𝑖 ∈ ℕ ↦ (vol‘((𝐶𝑖)[,)(𝐷𝑖))))) ∈ ℝ)
111103breq1d 4633 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖 = 𝑗 → ((𝐷𝑖) ≤ 𝑧 ↔ (𝐷𝑗) ≤ 𝑧))
112111, 103ifbieq1d 4087 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 𝑗 → if((𝐷𝑖) ≤ 𝑧, (𝐷𝑖), 𝑧) = if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))
113102, 112oveq12d 6633 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 𝑗 → ((𝐶𝑖)[,)if((𝐷𝑖) ≤ 𝑧, (𝐷𝑖), 𝑧)) = ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)))
114113fveq2d 6162 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = 𝑗 → (vol‘((𝐶𝑖)[,)if((𝐷𝑖) ≤ 𝑧, (𝐷𝑖), 𝑧))) = (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))))
115114cbvmptv 4720 . . . . . . . . . . . . . . . . . . 19 (𝑖 ∈ ℕ ↦ (vol‘((𝐶𝑖)[,)if((𝐷𝑖) ≤ 𝑧, (𝐷𝑖), 𝑧)))) = (𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))))
116115eqcomi 2630 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)))) = (𝑖 ∈ ℕ ↦ (vol‘((𝐶𝑖)[,)if((𝐷𝑖) ≤ 𝑧, (𝐷𝑖), 𝑧))))
117116fveq2i 6161 . . . . . . . . . . . . . . . . 17 ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))))) = (Σ^‘(𝑖 ∈ ℕ ↦ (vol‘((𝐶𝑖)[,)if((𝐷𝑖) ≤ 𝑧, (𝐷𝑖), 𝑧)))))
118117breq2i 4631 . . . . . . . . . . . . . . . 16 ((𝑧𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))))) ↔ (𝑧𝐴) ≤ (Σ^‘(𝑖 ∈ ℕ ↦ (vol‘((𝐶𝑖)[,)if((𝐷𝑖) ≤ 𝑧, (𝐷𝑖), 𝑧))))))
119118a1i 11 . . . . . . . . . . . . . . 15 (𝑧 ∈ (𝐴[,]𝐵) → ((𝑧𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))))) ↔ (𝑧𝐴) ≤ (Σ^‘(𝑖 ∈ ℕ ↦ (vol‘((𝐶𝑖)[,)if((𝐷𝑖) ≤ 𝑧, (𝐷𝑖), 𝑧)))))))
120119rabbiia 3177 . . . . . . . . . . . . . 14 {𝑧 ∈ (𝐴[,]𝐵) ∣ (𝑧𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)))))} = {𝑧 ∈ (𝐴[,]𝐵) ∣ (𝑧𝐴) ≤ (Σ^‘(𝑖 ∈ ℕ ↦ (vol‘((𝐶𝑖)[,)if((𝐷𝑖) ≤ 𝑧, (𝐷𝑖), 𝑧)))))}
12158, 120eqtri 2643 . . . . . . . . . . . . 13 𝑈 = {𝑧 ∈ (𝐴[,]𝐵) ∣ (𝑧𝐴) ≤ (Σ^‘(𝑖 ∈ ℕ ↦ (vol‘((𝐶𝑖)[,)if((𝐷𝑖) ≤ 𝑧, (𝐷𝑖), 𝑧)))))}
12264adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑆 < 𝐵) → 𝑆𝑈)
1231223ad2ant1 1080 . . . . . . . . . . . . 13 (((𝜑𝑆 < 𝐵) ∧ 𝑗 ∈ ℕ ∧ 𝑆 ∈ ((𝐶𝑗)[,)(𝐷𝑗))) → 𝑆𝑈)
124883ad2ant1 1080 . . . . . . . . . . . . 13 (((𝜑𝑆 < 𝐵) ∧ 𝑗 ∈ ℕ ∧ 𝑆 ∈ ((𝐶𝑗)[,)(𝐷𝑗))) → 𝐴𝑆)
125893ad2ant1 1080 . . . . . . . . . . . . 13 (((𝜑𝑆 < 𝐵) ∧ 𝑗 ∈ ℕ ∧ 𝑆 ∈ ((𝐶𝑗)[,)(𝐷𝑗))) → 𝑆 < 𝐵)
126 simp2 1060 . . . . . . . . . . . . 13 (((𝜑𝑆 < 𝐵) ∧ 𝑗 ∈ ℕ ∧ 𝑆 ∈ ((𝐶𝑗)[,)(𝐷𝑗))) → 𝑗 ∈ ℕ)
127 simp3 1061 . . . . . . . . . . . . 13 (((𝜑𝑆 < 𝐵) ∧ 𝑗 ∈ ℕ ∧ 𝑆 ∈ ((𝐶𝑗)[,)(𝐷𝑗))) → 𝑆 ∈ ((𝐶𝑗)[,)(𝐷𝑗)))
128 eqid 2621 . . . . . . . . . . . . 13 if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵) = if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵)
12995, 97, 99, 101, 110, 121, 123, 124, 125, 126, 127, 128hoidmv1lelem2 40143 . . . . . . . . . . . 12 (((𝜑𝑆 < 𝐵) ∧ 𝑗 ∈ ℕ ∧ 𝑆 ∈ ((𝐶𝑗)[,)(𝐷𝑗))) → ∃𝑢𝑈 𝑆 < 𝑢)
1301293exp 1261 . . . . . . . . . . 11 ((𝜑𝑆 < 𝐵) → (𝑗 ∈ ℕ → (𝑆 ∈ ((𝐶𝑗)[,)(𝐷𝑗)) → ∃𝑢𝑈 𝑆 < 𝑢)))
131130rexlimdv 3025 . . . . . . . . . 10 ((𝜑𝑆 < 𝐵) → (∃𝑗 ∈ ℕ 𝑆 ∈ ((𝐶𝑗)[,)(𝐷𝑗)) → ∃𝑢𝑈 𝑆 < 𝑢))
13293, 131mpd 15 . . . . . . . . 9 ((𝜑𝑆 < 𝐵) → ∃𝑢𝑈 𝑆 < 𝑢)
13368, 73, 132syl2anc 692 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐵𝑆) → ∃𝑢𝑈 𝑆 < 𝑢)
13457adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑢𝑈) → (𝐴[,]𝐵) ⊆ ℝ)
13560, 134syl5ss 3599 . . . . . . . . . . . . . 14 ((𝜑𝑢𝑈) → 𝑈 ⊆ ℝ)
13682adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑢𝑈) → 𝑈 ≠ ∅)
1372, 1jca 554 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
138137adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑢𝑈) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
13960a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑢𝑈) → 𝑈 ⊆ (𝐴[,]𝐵))
14064adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑢𝑈) → 𝑆𝑈)
141 iccsupr 12224 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑈 ⊆ (𝐴[,]𝐵) ∧ 𝑆𝑈) → (𝑈 ⊆ ℝ ∧ 𝑈 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝑈 𝑦𝑥))
142138, 139, 140, 141syl3anc 1323 . . . . . . . . . . . . . . 15 ((𝜑𝑢𝑈) → (𝑈 ⊆ ℝ ∧ 𝑈 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝑈 𝑦𝑥))
143142simp3d 1073 . . . . . . . . . . . . . 14 ((𝜑𝑢𝑈) → ∃𝑥 ∈ ℝ ∀𝑦𝑈 𝑦𝑥)
144 simpr 477 . . . . . . . . . . . . . 14 ((𝜑𝑢𝑈) → 𝑢𝑈)
145 suprub 10944 . . . . . . . . . . . . . 14 (((𝑈 ⊆ ℝ ∧ 𝑈 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝑈 𝑦𝑥) ∧ 𝑢𝑈) → 𝑢 ≤ sup(𝑈, ℝ, < ))
146135, 136, 143, 144, 145syl31anc 1326 . . . . . . . . . . . . 13 ((𝜑𝑢𝑈) → 𝑢 ≤ sup(𝑈, ℝ, < ))
147146, 62syl6breqr 4665 . . . . . . . . . . . 12 ((𝜑𝑢𝑈) → 𝑢𝑆)
148147ralrimiva 2962 . . . . . . . . . . 11 (𝜑 → ∀𝑢𝑈 𝑢𝑆)
14960sseli 3584 . . . . . . . . . . . . . . 15 (𝑢𝑈𝑢 ∈ (𝐴[,]𝐵))
150149adantl 482 . . . . . . . . . . . . . 14 ((𝜑𝑢𝑈) → 𝑢 ∈ (𝐴[,]𝐵))
151134, 150sseldd 3589 . . . . . . . . . . . . 13 ((𝜑𝑢𝑈) → 𝑢 ∈ ℝ)
15266adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑢𝑈) → 𝑆 ∈ ℝ)
153151, 152lenltd 10143 . . . . . . . . . . . 12 ((𝜑𝑢𝑈) → (𝑢𝑆 ↔ ¬ 𝑆 < 𝑢))
154153ralbidva 2981 . . . . . . . . . . 11 (𝜑 → (∀𝑢𝑈 𝑢𝑆 ↔ ∀𝑢𝑈 ¬ 𝑆 < 𝑢))
155148, 154mpbid 222 . . . . . . . . . 10 (𝜑 → ∀𝑢𝑈 ¬ 𝑆 < 𝑢)
156 ralnex 2988 . . . . . . . . . 10 (∀𝑢𝑈 ¬ 𝑆 < 𝑢 ↔ ¬ ∃𝑢𝑈 𝑆 < 𝑢)
157155, 156sylib 208 . . . . . . . . 9 (𝜑 → ¬ ∃𝑢𝑈 𝑆 < 𝑢)
158157adantr 481 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐵𝑆) → ¬ ∃𝑢𝑈 𝑆 < 𝑢)
159133, 158condan 834 . . . . . . 7 (𝜑𝐵𝑆)
160 iccleub 12187 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑆 ∈ (𝐴[,]𝐵)) → 𝑆𝐵)
16176, 56, 65, 160syl3anc 1323 . . . . . . 7 (𝜑𝑆𝐵)
16256, 67, 159, 161xrletrid 11946 . . . . . 6 (𝜑𝐵 = 𝑆)
163162, 64eqeltrd 2698 . . . . 5 (𝜑𝐵𝑈)
164163, 58syl6eleq 2708 . . . 4 (𝜑𝐵 ∈ {𝑧 ∈ (𝐴[,]𝐵) ∣ (𝑧𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)))))})
165 oveq1 6622 . . . . . 6 (𝑧 = 𝐵 → (𝑧𝐴) = (𝐵𝐴))
166 breq2 4627 . . . . . . . . . . 11 (𝑧 = 𝐵 → ((𝐷𝑗) ≤ 𝑧 ↔ (𝐷𝑗) ≤ 𝐵))
167 id 22 . . . . . . . . . . 11 (𝑧 = 𝐵𝑧 = 𝐵)
168166, 167ifbieq2d 4089 . . . . . . . . . 10 (𝑧 = 𝐵 → if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧) = if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵))
169168oveq2d 6631 . . . . . . . . 9 (𝑧 = 𝐵 → ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)) = ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵)))
170169fveq2d 6162 . . . . . . . 8 (𝑧 = 𝐵 → (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))) = (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵))))
171170mpteq2dv 4715 . . . . . . 7 (𝑧 = 𝐵 → (𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)))) = (𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵)))))
172171fveq2d 6162 . . . . . 6 (𝑧 = 𝐵 → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))))) = (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵))))))
173165, 172breq12d 4636 . . . . 5 (𝑧 = 𝐵 → ((𝑧𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))))) ↔ (𝐵𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵)))))))
174173elrab 3351 . . . 4 (𝐵 ∈ {𝑧 ∈ (𝐴[,]𝐵) ∣ (𝑧𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)))))} ↔ (𝐵 ∈ (𝐴[,]𝐵) ∧ (𝐵𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵)))))))
175164, 174sylib 208 . . 3 (𝜑 → (𝐵 ∈ (𝐴[,]𝐵) ∧ (𝐵𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵)))))))
176175simprd 479 . 2 (𝜑 → (𝐵𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵))))))
1773, 55, 32, 176, 49letrd 10154 1 (𝜑 → (𝐵𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)(𝐷𝑗))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987  wne 2790  wral 2908  wrex 2909  {crab 2912  Vcvv 3190  wss 3560  c0 3897  ifcif 4064   ciun 4492   class class class wbr 4623  cmpt 4683  dom cdm 5084  wf 5853  cfv 5857  (class class class)co 6615  supcsup 8306  cr 9895  0cc0 9896  +∞cpnf 10031  *cxr 10033   < clt 10034  cle 10035  cmin 10226  cn 10980  [,)cico 12135  [,]cicc 12136  volcvol 23172  Σ^csumge0 39916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-inf2 8498  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973  ax-pre-sup 9974
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rmo 2916  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-int 4448  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-se 5044  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-isom 5866  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-of 6862  df-om 7028  df-1st 7128  df-2nd 7129  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-1o 7520  df-2o 7521  df-oadd 7524  df-er 7702  df-map 7819  df-pm 7820  df-en 7916  df-dom 7917  df-sdom 7918  df-fin 7919  df-fi 8277  df-sup 8308  df-inf 8309  df-oi 8375  df-card 8725  df-cda 8950  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-div 10645  df-nn 10981  df-2 11039  df-3 11040  df-n0 11253  df-z 11338  df-uz 11648  df-q 11749  df-rp 11793  df-xneg 11906  df-xadd 11907  df-xmul 11908  df-ioo 12137  df-ico 12139  df-icc 12140  df-fz 12285  df-fzo 12423  df-fl 12549  df-seq 12758  df-exp 12817  df-hash 13074  df-cj 13789  df-re 13790  df-im 13791  df-sqrt 13925  df-abs 13926  df-clim 14169  df-rlim 14170  df-sum 14367  df-rest 16023  df-topgen 16044  df-psmet 19678  df-xmet 19679  df-met 19680  df-bl 19681  df-mopn 19682  df-top 20639  df-topon 20656  df-bases 20690  df-cmp 21130  df-ovol 23173  df-vol 23174  df-sumge0 39917
This theorem is referenced by:  hoidmv1le  40145
  Copyright terms: Public domain W3C validator