MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subdrgint Structured version   Visualization version   GIF version

Theorem subdrgint 19582
Description: The intersection of a nonempty collection of sub division rings is a sub division ring. (Contributed by Thierry Arnoux, 21-Aug-2023.)
Hypotheses
Ref Expression
subdrgint.1 𝐿 = (𝑅s 𝑆)
subdrgint.2 (𝜑𝑅 ∈ DivRing)
subdrgint.3 (𝜑𝑆 ⊆ (SubRing‘𝑅))
subdrgint.4 (𝜑𝑆 ≠ ∅)
subdrgint.5 ((𝜑𝑠𝑆) → (𝑅s 𝑠) ∈ DivRing)
Assertion
Ref Expression
subdrgint (𝜑𝐿 ∈ DivRing)
Distinct variable groups:   𝐿,𝑠   𝑅,𝑠   𝑆,𝑠   𝜑,𝑠

Proof of Theorem subdrgint
StepHypRef Expression
1 subdrgint.3 . . . 4 (𝜑𝑆 ⊆ (SubRing‘𝑅))
2 subdrgint.4 . . . 4 (𝜑𝑆 ≠ ∅)
3 subrgint 19557 . . . 4 ((𝑆 ⊆ (SubRing‘𝑅) ∧ 𝑆 ≠ ∅) → 𝑆 ∈ (SubRing‘𝑅))
41, 2, 3syl2anc 586 . . 3 (𝜑 𝑆 ∈ (SubRing‘𝑅))
5 subdrgint.1 . . . 4 𝐿 = (𝑅s 𝑆)
65subrgring 19538 . . 3 ( 𝑆 ∈ (SubRing‘𝑅) → 𝐿 ∈ Ring)
74, 6syl 17 . 2 (𝜑𝐿 ∈ Ring)
85fveq2i 6673 . . . 4 (mulGrp‘𝐿) = (mulGrp‘(𝑅s 𝑆))
98oveq1i 7166 . . 3 ((mulGrp‘𝐿) ↾s ((Base‘𝐿) ∖ {(0g𝐿)})) = ((mulGrp‘(𝑅s 𝑆)) ↾s ((Base‘𝐿) ∖ {(0g𝐿)}))
10 subdrgint.2 . . . . . . 7 (𝜑𝑅 ∈ DivRing)
11 eqid 2821 . . . . . . . 8 (𝑅s 𝑆) = (𝑅s 𝑆)
12 eqid 2821 . . . . . . . 8 (mulGrp‘𝑅) = (mulGrp‘𝑅)
1311, 12mgpress 19250 . . . . . . 7 ((𝑅 ∈ DivRing ∧ 𝑆 ∈ (SubRing‘𝑅)) → ((mulGrp‘𝑅) ↾s 𝑆) = (mulGrp‘(𝑅s 𝑆)))
1410, 4, 13syl2anc 586 . . . . . 6 (𝜑 → ((mulGrp‘𝑅) ↾s 𝑆) = (mulGrp‘(𝑅s 𝑆)))
1514oveq1d 7171 . . . . 5 (𝜑 → (((mulGrp‘𝑅) ↾s 𝑆) ↾s ((Base‘𝐿) ∖ {(0g𝐿)})) = ((mulGrp‘(𝑅s 𝑆)) ↾s ((Base‘𝐿) ∖ {(0g𝐿)})))
16 difssd 4109 . . . . . . 7 (𝜑 → ((Base‘𝐿) ∖ {(0g𝐿)}) ⊆ (Base‘𝐿))
17 eqid 2821 . . . . . . . . 9 (Base‘𝑅) = (Base‘𝑅)
1817subrgss 19536 . . . . . . . 8 ( 𝑆 ∈ (SubRing‘𝑅) → 𝑆 ⊆ (Base‘𝑅))
195, 17ressbas2 16555 . . . . . . . 8 ( 𝑆 ⊆ (Base‘𝑅) → 𝑆 = (Base‘𝐿))
204, 18, 193syl 18 . . . . . . 7 (𝜑 𝑆 = (Base‘𝐿))
2116, 20sseqtrrd 4008 . . . . . 6 (𝜑 → ((Base‘𝐿) ∖ {(0g𝐿)}) ⊆ 𝑆)
22 ressabs 16563 . . . . . 6 (( 𝑆 ∈ (SubRing‘𝑅) ∧ ((Base‘𝐿) ∖ {(0g𝐿)}) ⊆ 𝑆) → (((mulGrp‘𝑅) ↾s 𝑆) ↾s ((Base‘𝐿) ∖ {(0g𝐿)})) = ((mulGrp‘𝑅) ↾s ((Base‘𝐿) ∖ {(0g𝐿)})))
234, 21, 22syl2anc 586 . . . . 5 (𝜑 → (((mulGrp‘𝑅) ↾s 𝑆) ↾s ((Base‘𝐿) ∖ {(0g𝐿)})) = ((mulGrp‘𝑅) ↾s ((Base‘𝐿) ∖ {(0g𝐿)})))
2415, 23eqtr3d 2858 . . . 4 (𝜑 → ((mulGrp‘(𝑅s 𝑆)) ↾s ((Base‘𝐿) ∖ {(0g𝐿)})) = ((mulGrp‘𝑅) ↾s ((Base‘𝐿) ∖ {(0g𝐿)})))
25 intiin 4983 . . . . . . . 8 𝑆 = 𝑠𝑆 𝑠
2625, 20syl5reqr 2871 . . . . . . 7 (𝜑 → (Base‘𝐿) = 𝑠𝑆 𝑠)
2726difeq1d 4098 . . . . . 6 (𝜑 → ((Base‘𝐿) ∖ {(0g𝐿)}) = ( 𝑠𝑆 𝑠 ∖ {(0g𝐿)}))
2827oveq2d 7172 . . . . 5 (𝜑 → ((mulGrp‘𝑅) ↾s ((Base‘𝐿) ∖ {(0g𝐿)})) = ((mulGrp‘𝑅) ↾s ( 𝑠𝑆 𝑠 ∖ {(0g𝐿)})))
29 vex 3497 . . . . . . . . . 10 𝑠 ∈ V
3029difexi 5232 . . . . . . . . 9 (𝑠 ∖ {(0g𝐿)}) ∈ V
3130dfiin3 5838 . . . . . . . 8 𝑠𝑆 (𝑠 ∖ {(0g𝐿)}) = ran (𝑠𝑆 ↦ (𝑠 ∖ {(0g𝐿)}))
32 iindif1 4997 . . . . . . . . 9 (𝑆 ≠ ∅ → 𝑠𝑆 (𝑠 ∖ {(0g𝐿)}) = ( 𝑠𝑆 𝑠 ∖ {(0g𝐿)}))
332, 32syl 17 . . . . . . . 8 (𝜑 𝑠𝑆 (𝑠 ∖ {(0g𝐿)}) = ( 𝑠𝑆 𝑠 ∖ {(0g𝐿)}))
3431, 33syl5eqr 2870 . . . . . . 7 (𝜑 ran (𝑠𝑆 ↦ (𝑠 ∖ {(0g𝐿)})) = ( 𝑠𝑆 𝑠 ∖ {(0g𝐿)}))
3534oveq2d 7172 . . . . . 6 (𝜑 → ((mulGrp‘𝑅) ↾s ran (𝑠𝑆 ↦ (𝑠 ∖ {(0g𝐿)}))) = ((mulGrp‘𝑅) ↾s ( 𝑠𝑆 𝑠 ∖ {(0g𝐿)})))
36 difss 4108 . . . . . . . . . 10 ((Base‘𝑅) ∖ {(0g𝑅)}) ⊆ (Base‘𝑅)
37 eqid 2821 . . . . . . . . . . 11 ((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)})) = ((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)}))
3812, 17mgpbas 19245 . . . . . . . . . . 11 (Base‘𝑅) = (Base‘(mulGrp‘𝑅))
3937, 38ressbas2 16555 . . . . . . . . . 10 (((Base‘𝑅) ∖ {(0g𝑅)}) ⊆ (Base‘𝑅) → ((Base‘𝑅) ∖ {(0g𝑅)}) = (Base‘((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)}))))
4036, 39ax-mp 5 . . . . . . . . 9 ((Base‘𝑅) ∖ {(0g𝑅)}) = (Base‘((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)})))
4140fvexi 6684 . . . . . . . 8 ((Base‘𝑅) ∖ {(0g𝑅)}) ∈ V
42 iinssiun 4932 . . . . . . . . . . 11 (𝑆 ≠ ∅ → 𝑠𝑆 (𝑠 ∖ {(0g𝐿)}) ⊆ 𝑠𝑆 (𝑠 ∖ {(0g𝐿)}))
432, 42syl 17 . . . . . . . . . 10 (𝜑 𝑠𝑆 (𝑠 ∖ {(0g𝐿)}) ⊆ 𝑠𝑆 (𝑠 ∖ {(0g𝐿)}))
44 subrgsubg 19541 . . . . . . . . . . . . . . . . . . 19 (𝑠 ∈ (SubRing‘𝑅) → 𝑠 ∈ (SubGrp‘𝑅))
4544ssriv 3971 . . . . . . . . . . . . . . . . . 18 (SubRing‘𝑅) ⊆ (SubGrp‘𝑅)
461, 45sstrdi 3979 . . . . . . . . . . . . . . . . 17 (𝜑𝑆 ⊆ (SubGrp‘𝑅))
47 subgint 18303 . . . . . . . . . . . . . . . . 17 ((𝑆 ⊆ (SubGrp‘𝑅) ∧ 𝑆 ≠ ∅) → 𝑆 ∈ (SubGrp‘𝑅))
4846, 2, 47syl2anc 586 . . . . . . . . . . . . . . . 16 (𝜑 𝑆 ∈ (SubGrp‘𝑅))
49 eqid 2821 . . . . . . . . . . . . . . . . 17 (0g𝑅) = (0g𝑅)
505, 49subg0 18285 . . . . . . . . . . . . . . . 16 ( 𝑆 ∈ (SubGrp‘𝑅) → (0g𝑅) = (0g𝐿))
5148, 50syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (0g𝑅) = (0g𝐿))
5251adantr 483 . . . . . . . . . . . . . 14 ((𝜑𝑠𝑆) → (0g𝑅) = (0g𝐿))
5352sneqd 4579 . . . . . . . . . . . . 13 ((𝜑𝑠𝑆) → {(0g𝑅)} = {(0g𝐿)})
5453difeq2d 4099 . . . . . . . . . . . 12 ((𝜑𝑠𝑆) → (𝑠 ∖ {(0g𝑅)}) = (𝑠 ∖ {(0g𝐿)}))
551sselda 3967 . . . . . . . . . . . . . 14 ((𝜑𝑠𝑆) → 𝑠 ∈ (SubRing‘𝑅))
5617subrgss 19536 . . . . . . . . . . . . . 14 (𝑠 ∈ (SubRing‘𝑅) → 𝑠 ⊆ (Base‘𝑅))
5755, 56syl 17 . . . . . . . . . . . . 13 ((𝜑𝑠𝑆) → 𝑠 ⊆ (Base‘𝑅))
5857ssdifd 4117 . . . . . . . . . . . 12 ((𝜑𝑠𝑆) → (𝑠 ∖ {(0g𝑅)}) ⊆ ((Base‘𝑅) ∖ {(0g𝑅)}))
5954, 58eqsstrrd 4006 . . . . . . . . . . 11 ((𝜑𝑠𝑆) → (𝑠 ∖ {(0g𝐿)}) ⊆ ((Base‘𝑅) ∖ {(0g𝑅)}))
6059iunssd 4974 . . . . . . . . . 10 (𝜑 𝑠𝑆 (𝑠 ∖ {(0g𝐿)}) ⊆ ((Base‘𝑅) ∖ {(0g𝑅)}))
6143, 60sstrd 3977 . . . . . . . . 9 (𝜑 𝑠𝑆 (𝑠 ∖ {(0g𝐿)}) ⊆ ((Base‘𝑅) ∖ {(0g𝑅)}))
6231, 61eqsstrrid 4016 . . . . . . . 8 (𝜑 ran (𝑠𝑆 ↦ (𝑠 ∖ {(0g𝐿)})) ⊆ ((Base‘𝑅) ∖ {(0g𝑅)}))
63 ressabs 16563 . . . . . . . 8 ((((Base‘𝑅) ∖ {(0g𝑅)}) ∈ V ∧ ran (𝑠𝑆 ↦ (𝑠 ∖ {(0g𝐿)})) ⊆ ((Base‘𝑅) ∖ {(0g𝑅)})) → (((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)})) ↾s ran (𝑠𝑆 ↦ (𝑠 ∖ {(0g𝐿)}))) = ((mulGrp‘𝑅) ↾s ran (𝑠𝑆 ↦ (𝑠 ∖ {(0g𝐿)}))))
6441, 62, 63sylancr 589 . . . . . . 7 (𝜑 → (((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)})) ↾s ran (𝑠𝑆 ↦ (𝑠 ∖ {(0g𝐿)}))) = ((mulGrp‘𝑅) ↾s ran (𝑠𝑆 ↦ (𝑠 ∖ {(0g𝐿)}))))
6517, 49, 37drngmgp 19514 . . . . . . . . . . . . . 14 (𝑅 ∈ DivRing → ((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)})) ∈ Grp)
6610, 65syl 17 . . . . . . . . . . . . 13 (𝜑 → ((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)})) ∈ Grp)
6766adantr 483 . . . . . . . . . . . 12 ((𝜑𝑠𝑆) → ((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)})) ∈ Grp)
6859, 40sseqtrdi 4017 . . . . . . . . . . . 12 ((𝜑𝑠𝑆) → (𝑠 ∖ {(0g𝐿)}) ⊆ (Base‘((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)}))))
69 ressabs 16563 . . . . . . . . . . . . . 14 ((((Base‘𝑅) ∖ {(0g𝑅)}) ∈ V ∧ (𝑠 ∖ {(0g𝐿)}) ⊆ ((Base‘𝑅) ∖ {(0g𝑅)})) → (((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)})) ↾s (𝑠 ∖ {(0g𝐿)})) = ((mulGrp‘𝑅) ↾s (𝑠 ∖ {(0g𝐿)})))
7041, 59, 69sylancr 589 . . . . . . . . . . . . 13 ((𝜑𝑠𝑆) → (((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)})) ↾s (𝑠 ∖ {(0g𝐿)})) = ((mulGrp‘𝑅) ↾s (𝑠 ∖ {(0g𝐿)})))
71 eqid 2821 . . . . . . . . . . . . . . . . . 18 (𝑅s 𝑠) = (𝑅s 𝑠)
7271, 12mgpress 19250 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ DivRing ∧ 𝑠𝑆) → ((mulGrp‘𝑅) ↾s 𝑠) = (mulGrp‘(𝑅s 𝑠)))
7310, 72sylan 582 . . . . . . . . . . . . . . . 16 ((𝜑𝑠𝑆) → ((mulGrp‘𝑅) ↾s 𝑠) = (mulGrp‘(𝑅s 𝑠)))
7454eqcomd 2827 . . . . . . . . . . . . . . . 16 ((𝜑𝑠𝑆) → (𝑠 ∖ {(0g𝐿)}) = (𝑠 ∖ {(0g𝑅)}))
7573, 74oveq12d 7174 . . . . . . . . . . . . . . 15 ((𝜑𝑠𝑆) → (((mulGrp‘𝑅) ↾s 𝑠) ↾s (𝑠 ∖ {(0g𝐿)})) = ((mulGrp‘(𝑅s 𝑠)) ↾s (𝑠 ∖ {(0g𝑅)})))
76 simpr 487 . . . . . . . . . . . . . . . 16 ((𝜑𝑠𝑆) → 𝑠𝑆)
77 difssd 4109 . . . . . . . . . . . . . . . 16 ((𝜑𝑠𝑆) → (𝑠 ∖ {(0g𝐿)}) ⊆ 𝑠)
78 ressabs 16563 . . . . . . . . . . . . . . . 16 ((𝑠𝑆 ∧ (𝑠 ∖ {(0g𝐿)}) ⊆ 𝑠) → (((mulGrp‘𝑅) ↾s 𝑠) ↾s (𝑠 ∖ {(0g𝐿)})) = ((mulGrp‘𝑅) ↾s (𝑠 ∖ {(0g𝐿)})))
7976, 77, 78syl2anc 586 . . . . . . . . . . . . . . 15 ((𝜑𝑠𝑆) → (((mulGrp‘𝑅) ↾s 𝑠) ↾s (𝑠 ∖ {(0g𝐿)})) = ((mulGrp‘𝑅) ↾s (𝑠 ∖ {(0g𝐿)})))
8075, 79eqtr3d 2858 . . . . . . . . . . . . . 14 ((𝜑𝑠𝑆) → ((mulGrp‘(𝑅s 𝑠)) ↾s (𝑠 ∖ {(0g𝑅)})) = ((mulGrp‘𝑅) ↾s (𝑠 ∖ {(0g𝐿)})))
8171, 17ressbas2 16555 . . . . . . . . . . . . . . . . . 18 (𝑠 ⊆ (Base‘𝑅) → 𝑠 = (Base‘(𝑅s 𝑠)))
8255, 56, 813syl 18 . . . . . . . . . . . . . . . . 17 ((𝜑𝑠𝑆) → 𝑠 = (Base‘(𝑅s 𝑠)))
8371, 49subrg0 19542 . . . . . . . . . . . . . . . . . . 19 (𝑠 ∈ (SubRing‘𝑅) → (0g𝑅) = (0g‘(𝑅s 𝑠)))
8455, 83syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑠𝑆) → (0g𝑅) = (0g‘(𝑅s 𝑠)))
8584sneqd 4579 . . . . . . . . . . . . . . . . 17 ((𝜑𝑠𝑆) → {(0g𝑅)} = {(0g‘(𝑅s 𝑠))})
8682, 85difeq12d 4100 . . . . . . . . . . . . . . . 16 ((𝜑𝑠𝑆) → (𝑠 ∖ {(0g𝑅)}) = ((Base‘(𝑅s 𝑠)) ∖ {(0g‘(𝑅s 𝑠))}))
8786oveq2d 7172 . . . . . . . . . . . . . . 15 ((𝜑𝑠𝑆) → ((mulGrp‘(𝑅s 𝑠)) ↾s (𝑠 ∖ {(0g𝑅)})) = ((mulGrp‘(𝑅s 𝑠)) ↾s ((Base‘(𝑅s 𝑠)) ∖ {(0g‘(𝑅s 𝑠))})))
88 subdrgint.5 . . . . . . . . . . . . . . . 16 ((𝜑𝑠𝑆) → (𝑅s 𝑠) ∈ DivRing)
89 eqid 2821 . . . . . . . . . . . . . . . . 17 (Base‘(𝑅s 𝑠)) = (Base‘(𝑅s 𝑠))
90 eqid 2821 . . . . . . . . . . . . . . . . 17 (0g‘(𝑅s 𝑠)) = (0g‘(𝑅s 𝑠))
91 eqid 2821 . . . . . . . . . . . . . . . . 17 ((mulGrp‘(𝑅s 𝑠)) ↾s ((Base‘(𝑅s 𝑠)) ∖ {(0g‘(𝑅s 𝑠))})) = ((mulGrp‘(𝑅s 𝑠)) ↾s ((Base‘(𝑅s 𝑠)) ∖ {(0g‘(𝑅s 𝑠))}))
9289, 90, 91drngmgp 19514 . . . . . . . . . . . . . . . 16 ((𝑅s 𝑠) ∈ DivRing → ((mulGrp‘(𝑅s 𝑠)) ↾s ((Base‘(𝑅s 𝑠)) ∖ {(0g‘(𝑅s 𝑠))})) ∈ Grp)
9388, 92syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑠𝑆) → ((mulGrp‘(𝑅s 𝑠)) ↾s ((Base‘(𝑅s 𝑠)) ∖ {(0g‘(𝑅s 𝑠))})) ∈ Grp)
9487, 93eqeltrd 2913 . . . . . . . . . . . . . 14 ((𝜑𝑠𝑆) → ((mulGrp‘(𝑅s 𝑠)) ↾s (𝑠 ∖ {(0g𝑅)})) ∈ Grp)
9580, 94eqeltrrd 2914 . . . . . . . . . . . . 13 ((𝜑𝑠𝑆) → ((mulGrp‘𝑅) ↾s (𝑠 ∖ {(0g𝐿)})) ∈ Grp)
9670, 95eqeltrd 2913 . . . . . . . . . . . 12 ((𝜑𝑠𝑆) → (((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)})) ↾s (𝑠 ∖ {(0g𝐿)})) ∈ Grp)
97 eqid 2821 . . . . . . . . . . . . 13 (Base‘((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)}))) = (Base‘((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)})))
9897issubg 18279 . . . . . . . . . . . 12 ((𝑠 ∖ {(0g𝐿)}) ∈ (SubGrp‘((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)}))) ↔ (((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)})) ∈ Grp ∧ (𝑠 ∖ {(0g𝐿)}) ⊆ (Base‘((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)}))) ∧ (((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)})) ↾s (𝑠 ∖ {(0g𝐿)})) ∈ Grp))
9967, 68, 96, 98syl3anbrc 1339 . . . . . . . . . . 11 ((𝜑𝑠𝑆) → (𝑠 ∖ {(0g𝐿)}) ∈ (SubGrp‘((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)}))))
10099ralrimiva 3182 . . . . . . . . . 10 (𝜑 → ∀𝑠𝑆 (𝑠 ∖ {(0g𝐿)}) ∈ (SubGrp‘((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)}))))
101 eqid 2821 . . . . . . . . . . 11 (𝑠𝑆 ↦ (𝑠 ∖ {(0g𝐿)})) = (𝑠𝑆 ↦ (𝑠 ∖ {(0g𝐿)}))
102101rnmptss 6886 . . . . . . . . . 10 (∀𝑠𝑆 (𝑠 ∖ {(0g𝐿)}) ∈ (SubGrp‘((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)}))) → ran (𝑠𝑆 ↦ (𝑠 ∖ {(0g𝐿)})) ⊆ (SubGrp‘((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)}))))
103100, 102syl 17 . . . . . . . . 9 (𝜑 → ran (𝑠𝑆 ↦ (𝑠 ∖ {(0g𝐿)})) ⊆ (SubGrp‘((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)}))))
104 dmmptg 6096 . . . . . . . . . . . . 13 (∀𝑠𝑆 (𝑠 ∖ {(0g𝐿)}) ∈ V → dom (𝑠𝑆 ↦ (𝑠 ∖ {(0g𝐿)})) = 𝑆)
105 difexg 5231 . . . . . . . . . . . . 13 (𝑠𝑆 → (𝑠 ∖ {(0g𝐿)}) ∈ V)
106104, 105mprg 3152 . . . . . . . . . . . 12 dom (𝑠𝑆 ↦ (𝑠 ∖ {(0g𝐿)})) = 𝑆
107106a1i 11 . . . . . . . . . . 11 (𝜑 → dom (𝑠𝑆 ↦ (𝑠 ∖ {(0g𝐿)})) = 𝑆)
108107, 2eqnetrd 3083 . . . . . . . . . 10 (𝜑 → dom (𝑠𝑆 ↦ (𝑠 ∖ {(0g𝐿)})) ≠ ∅)
109 dm0rn0 5795 . . . . . . . . . . 11 (dom (𝑠𝑆 ↦ (𝑠 ∖ {(0g𝐿)})) = ∅ ↔ ran (𝑠𝑆 ↦ (𝑠 ∖ {(0g𝐿)})) = ∅)
110109necon3bii 3068 . . . . . . . . . 10 (dom (𝑠𝑆 ↦ (𝑠 ∖ {(0g𝐿)})) ≠ ∅ ↔ ran (𝑠𝑆 ↦ (𝑠 ∖ {(0g𝐿)})) ≠ ∅)
111108, 110sylib 220 . . . . . . . . 9 (𝜑 → ran (𝑠𝑆 ↦ (𝑠 ∖ {(0g𝐿)})) ≠ ∅)
112 subgint 18303 . . . . . . . . 9 ((ran (𝑠𝑆 ↦ (𝑠 ∖ {(0g𝐿)})) ⊆ (SubGrp‘((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)}))) ∧ ran (𝑠𝑆 ↦ (𝑠 ∖ {(0g𝐿)})) ≠ ∅) → ran (𝑠𝑆 ↦ (𝑠 ∖ {(0g𝐿)})) ∈ (SubGrp‘((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)}))))
113103, 111, 112syl2anc 586 . . . . . . . 8 (𝜑 ran (𝑠𝑆 ↦ (𝑠 ∖ {(0g𝐿)})) ∈ (SubGrp‘((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)}))))
114 eqid 2821 . . . . . . . . 9 (((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)})) ↾s ran (𝑠𝑆 ↦ (𝑠 ∖ {(0g𝐿)}))) = (((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)})) ↾s ran (𝑠𝑆 ↦ (𝑠 ∖ {(0g𝐿)})))
115114subggrp 18282 . . . . . . . 8 ( ran (𝑠𝑆 ↦ (𝑠 ∖ {(0g𝐿)})) ∈ (SubGrp‘((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)}))) → (((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)})) ↾s ran (𝑠𝑆 ↦ (𝑠 ∖ {(0g𝐿)}))) ∈ Grp)
116113, 115syl 17 . . . . . . 7 (𝜑 → (((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)})) ↾s ran (𝑠𝑆 ↦ (𝑠 ∖ {(0g𝐿)}))) ∈ Grp)
11764, 116eqeltrrd 2914 . . . . . 6 (𝜑 → ((mulGrp‘𝑅) ↾s ran (𝑠𝑆 ↦ (𝑠 ∖ {(0g𝐿)}))) ∈ Grp)
11835, 117eqeltrrd 2914 . . . . 5 (𝜑 → ((mulGrp‘𝑅) ↾s ( 𝑠𝑆 𝑠 ∖ {(0g𝐿)})) ∈ Grp)
11928, 118eqeltrd 2913 . . . 4 (𝜑 → ((mulGrp‘𝑅) ↾s ((Base‘𝐿) ∖ {(0g𝐿)})) ∈ Grp)
12024, 119eqeltrd 2913 . . 3 (𝜑 → ((mulGrp‘(𝑅s 𝑆)) ↾s ((Base‘𝐿) ∖ {(0g𝐿)})) ∈ Grp)
1219, 120eqeltrid 2917 . 2 (𝜑 → ((mulGrp‘𝐿) ↾s ((Base‘𝐿) ∖ {(0g𝐿)})) ∈ Grp)
122 eqid 2821 . . 3 (Base‘𝐿) = (Base‘𝐿)
123 eqid 2821 . . 3 (0g𝐿) = (0g𝐿)
124 eqid 2821 . . 3 ((mulGrp‘𝐿) ↾s ((Base‘𝐿) ∖ {(0g𝐿)})) = ((mulGrp‘𝐿) ↾s ((Base‘𝐿) ∖ {(0g𝐿)}))
125122, 123, 124isdrng2 19512 . 2 (𝐿 ∈ DivRing ↔ (𝐿 ∈ Ring ∧ ((mulGrp‘𝐿) ↾s ((Base‘𝐿) ∖ {(0g𝐿)})) ∈ Grp))
1267, 121, 125sylanbrc 585 1 (𝜑𝐿 ∈ DivRing)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wne 3016  wral 3138  Vcvv 3494  cdif 3933  wss 3936  c0 4291  {csn 4567   cint 4876   ciun 4919   ciin 4920  cmpt 5146  dom cdm 5555  ran crn 5556  cfv 6355  (class class class)co 7156  Basecbs 16483  s cress 16484  0gc0g 16713  Grpcgrp 18103  SubGrpcsubg 18273  mulGrpcmgp 19239  Ringcrg 19297  DivRingcdr 19502  SubRingcsubrg 19531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-tpos 7892  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-3 11702  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-0g 16715  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-grp 18106  df-minusg 18107  df-subg 18276  df-mgp 19240  df-ur 19252  df-ring 19299  df-oppr 19373  df-dvdsr 19391  df-unit 19392  df-invr 19422  df-dvr 19433  df-drng 19504  df-subrg 19533
This theorem is referenced by:  sdrgint  19583  primefld  19584
  Copyright terms: Public domain W3C validator