Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  taupi Structured version   Visualization version   GIF version

Theorem taupi 32829
Description: Relationship between τ and π. This can be seen as connecting the ratio of a circle's circumference to its radius and the ratio of a circle's circumference to its diameter. (Contributed by Jim Kingdon, 19-Feb-2019.) (Revised by AV, 1-Oct-2020.)
Assertion
Ref Expression
taupi τ = (2 · π)

Proof of Theorem taupi
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 taupilem2 32828 . 2 τ ≤ (2 · π)
2 inss1 3816 . . . . . . 7 (ℝ+ ∩ (cos “ {1})) ⊆ ℝ+
3 rpssre 11794 . . . . . . 7 + ⊆ ℝ
42, 3sstri 3596 . . . . . 6 (ℝ+ ∩ (cos “ {1})) ⊆ ℝ
5 2rp 11788 . . . . . . . . 9 2 ∈ ℝ+
6 pirp 24130 . . . . . . . . 9 π ∈ ℝ+
7 rpmulcl 11806 . . . . . . . . 9 ((2 ∈ ℝ+ ∧ π ∈ ℝ+) → (2 · π) ∈ ℝ+)
85, 6, 7mp2an 707 . . . . . . . 8 (2 · π) ∈ ℝ+
9 cos2pi 24145 . . . . . . . 8 (cos‘(2 · π)) = 1
10 taupilem3 32825 . . . . . . . 8 ((2 · π) ∈ (ℝ+ ∩ (cos “ {1})) ↔ ((2 · π) ∈ ℝ+ ∧ (cos‘(2 · π)) = 1))
118, 9, 10mpbir2an 954 . . . . . . 7 (2 · π) ∈ (ℝ+ ∩ (cos “ {1}))
1211ne0ii 3904 . . . . . 6 (ℝ+ ∩ (cos “ {1})) ≠ ∅
13 taupilemrplb 32826 . . . . . 6 𝑥 ∈ ℝ ∀𝑦 ∈ (ℝ+ ∩ (cos “ {1}))𝑥𝑦
144, 12, 133pm3.2i 1237 . . . . 5 ((ℝ+ ∩ (cos “ {1})) ⊆ ℝ ∧ (ℝ+ ∩ (cos “ {1})) ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ (ℝ+ ∩ (cos “ {1}))𝑥𝑦)
15 2re 11041 . . . . . 6 2 ∈ ℝ
16 pire 24127 . . . . . 6 π ∈ ℝ
1715, 16remulcli 10005 . . . . 5 (2 · π) ∈ ℝ
18 infregelb 10958 . . . . 5 ((((ℝ+ ∩ (cos “ {1})) ⊆ ℝ ∧ (ℝ+ ∩ (cos “ {1})) ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ (ℝ+ ∩ (cos “ {1}))𝑥𝑦) ∧ (2 · π) ∈ ℝ) → ((2 · π) ≤ inf((ℝ+ ∩ (cos “ {1})), ℝ, < ) ↔ ∀𝑥 ∈ (ℝ+ ∩ (cos “ {1}))(2 · π) ≤ 𝑥))
1914, 17, 18mp2an 707 . . . 4 ((2 · π) ≤ inf((ℝ+ ∩ (cos “ {1})), ℝ, < ) ↔ ∀𝑥 ∈ (ℝ+ ∩ (cos “ {1}))(2 · π) ≤ 𝑥)
20 taupilem3 32825 . . . . 5 (𝑥 ∈ (ℝ+ ∩ (cos “ {1})) ↔ (𝑥 ∈ ℝ+ ∧ (cos‘𝑥) = 1))
21 taupilem1 32827 . . . . 5 ((𝑥 ∈ ℝ+ ∧ (cos‘𝑥) = 1) → (2 · π) ≤ 𝑥)
2220, 21sylbi 207 . . . 4 (𝑥 ∈ (ℝ+ ∩ (cos “ {1})) → (2 · π) ≤ 𝑥)
2319, 22mprgbir 2922 . . 3 (2 · π) ≤ inf((ℝ+ ∩ (cos “ {1})), ℝ, < )
24 df-tau 32824 . . 3 τ = inf((ℝ+ ∩ (cos “ {1})), ℝ, < )
2523, 24breqtrri 4645 . 2 (2 · π) ≤ τ
26 infrecl 10956 . . . . 5 (((ℝ+ ∩ (cos “ {1})) ⊆ ℝ ∧ (ℝ+ ∩ (cos “ {1})) ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ (ℝ+ ∩ (cos “ {1}))𝑥𝑦) → inf((ℝ+ ∩ (cos “ {1})), ℝ, < ) ∈ ℝ)
2714, 26ax-mp 5 . . . 4 inf((ℝ+ ∩ (cos “ {1})), ℝ, < ) ∈ ℝ
2824, 27eqeltri 2694 . . 3 τ ∈ ℝ
2928, 17letri3i 10104 . 2 (τ = (2 · π) ↔ (τ ≤ (2 · π) ∧ (2 · π) ≤ τ))
301, 25, 29mpbir2an 954 1 τ = (2 · π)
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987  wne 2790  wral 2907  wrex 2908  cin 3558  wss 3559  c0 3896  {csn 4153   class class class wbr 4618  ccnv 5078  cima 5082  cfv 5852  (class class class)co 6610  infcinf 8298  cr 9886  1c1 9888   · cmul 9892   < clt 10025  cle 10026  2c2 11021  +crp 11783  cosccos 14727  πcpi 14729  τctau 32823
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-inf2 8489  ax-cnex 9943  ax-resscn 9944  ax-1cn 9945  ax-icn 9946  ax-addcl 9947  ax-addrcl 9948  ax-mulcl 9949  ax-mulrcl 9950  ax-mulcom 9951  ax-addass 9952  ax-mulass 9953  ax-distr 9954  ax-i2m1 9955  ax-1ne0 9956  ax-1rid 9957  ax-rnegex 9958  ax-rrecex 9959  ax-cnre 9960  ax-pre-lttri 9961  ax-pre-lttrn 9962  ax-pre-ltadd 9963  ax-pre-mulgt0 9964  ax-pre-sup 9965  ax-addf 9966  ax-mulf 9967
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-iin 4493  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-isom 5861  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-of 6857  df-om 7020  df-1st 7120  df-2nd 7121  df-supp 7248  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-2o 7513  df-oadd 7516  df-er 7694  df-map 7811  df-pm 7812  df-ixp 7860  df-en 7907  df-dom 7908  df-sdom 7909  df-fin 7910  df-fsupp 8227  df-fi 8268  df-sup 8299  df-inf 8300  df-oi 8366  df-card 8716  df-cda 8941  df-pnf 10027  df-mnf 10028  df-xr 10029  df-ltxr 10030  df-le 10031  df-sub 10219  df-neg 10220  df-div 10636  df-nn 10972  df-2 11030  df-3 11031  df-4 11032  df-5 11033  df-6 11034  df-7 11035  df-8 11036  df-9 11037  df-n0 11244  df-z 11329  df-dec 11445  df-uz 11639  df-q 11740  df-rp 11784  df-xneg 11897  df-xadd 11898  df-xmul 11899  df-ioo 12128  df-ioc 12129  df-ico 12130  df-icc 12131  df-fz 12276  df-fzo 12414  df-fl 12540  df-mod 12616  df-seq 12749  df-exp 12808  df-fac 13008  df-bc 13037  df-hash 13065  df-shft 13748  df-cj 13780  df-re 13781  df-im 13782  df-sqrt 13916  df-abs 13917  df-limsup 14143  df-clim 14160  df-rlim 14161  df-sum 14358  df-ef 14730  df-sin 14732  df-cos 14733  df-pi 14735  df-struct 15790  df-ndx 15791  df-slot 15792  df-base 15793  df-sets 15794  df-ress 15795  df-plusg 15882  df-mulr 15883  df-starv 15884  df-sca 15885  df-vsca 15886  df-ip 15887  df-tset 15888  df-ple 15889  df-ds 15892  df-unif 15893  df-hom 15894  df-cco 15895  df-rest 16011  df-topn 16012  df-0g 16030  df-gsum 16031  df-topgen 16032  df-pt 16033  df-prds 16036  df-xrs 16090  df-qtop 16095  df-imas 16096  df-xps 16098  df-mre 16174  df-mrc 16175  df-acs 16177  df-mgm 17170  df-sgrp 17212  df-mnd 17223  df-submnd 17264  df-mulg 17469  df-cntz 17678  df-cmn 18123  df-psmet 19666  df-xmet 19667  df-met 19668  df-bl 19669  df-mopn 19670  df-fbas 19671  df-fg 19672  df-cnfld 19675  df-top 20627  df-topon 20644  df-topsp 20657  df-bases 20670  df-cld 20742  df-ntr 20743  df-cls 20744  df-nei 20821  df-lp 20859  df-perf 20860  df-cn 20950  df-cnp 20951  df-haus 21038  df-tx 21284  df-hmeo 21477  df-fil 21569  df-fm 21661  df-flim 21662  df-flf 21663  df-xms 22044  df-ms 22045  df-tms 22046  df-cncf 22600  df-limc 23549  df-dv 23550  df-tau 32824
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator