MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ttgval Structured version   Visualization version   GIF version

Theorem ttgval 26663
Description: Define a function to augment a subcomplex Hilbert space with betweenness and a line definition. (Contributed by Thierry Arnoux, 25-Mar-2019.)
Hypotheses
Ref Expression
ttgval.n 𝐺 = (toTG‘𝐻)
ttgval.b 𝐵 = (Base‘𝐻)
ttgval.m = (-g𝐻)
ttgval.s · = ( ·𝑠𝐻)
ttgval.i 𝐼 = (Itv‘𝐺)
Assertion
Ref Expression
ttgval (𝐻𝑉 → (𝐺 = ((𝐻 sSet ⟨(Itv‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})⟩) sSet ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))})⟩) ∧ 𝐼 = (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})))
Distinct variable groups:   𝑥,𝑘,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝑘,𝐻,𝑥,𝑦,𝑧   𝑥,𝑉,𝑦,𝑧   𝑥, ,𝑦,𝑧   𝑥, · ,𝑦,𝑧
Allowed substitution hints:   𝐵(𝑘)   · (𝑘)   𝐺(𝑥,𝑦,𝑧,𝑘)   𝐼(𝑥,𝑦,𝑧,𝑘)   (𝑘)   𝑉(𝑘)

Proof of Theorem ttgval
Dummy variables 𝑎 𝑏 𝑐 𝑖 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ttgval.n . . . . 5 𝐺 = (toTG‘𝐻)
21a1i 11 . . . 4 (𝐻𝑉𝐺 = (toTG‘𝐻))
3 elex 3514 . . . . 5 (𝐻𝑉𝐻 ∈ V)
4 fveq2 6672 . . . . . . . . . 10 (𝑤 = 𝐻 → (Base‘𝑤) = (Base‘𝐻))
5 ttgval.b . . . . . . . . . 10 𝐵 = (Base‘𝐻)
64, 5syl6eqr 2876 . . . . . . . . 9 (𝑤 = 𝐻 → (Base‘𝑤) = 𝐵)
7 fveq2 6672 . . . . . . . . . . . . . 14 (𝑤 = 𝐻 → (-g𝑤) = (-g𝐻))
8 ttgval.m . . . . . . . . . . . . . 14 = (-g𝐻)
97, 8syl6eqr 2876 . . . . . . . . . . . . 13 (𝑤 = 𝐻 → (-g𝑤) = )
109oveqd 7175 . . . . . . . . . . . 12 (𝑤 = 𝐻 → (𝑧(-g𝑤)𝑥) = (𝑧 𝑥))
11 fveq2 6672 . . . . . . . . . . . . . 14 (𝑤 = 𝐻 → ( ·𝑠𝑤) = ( ·𝑠𝐻))
12 ttgval.s . . . . . . . . . . . . . 14 · = ( ·𝑠𝐻)
1311, 12syl6eqr 2876 . . . . . . . . . . . . 13 (𝑤 = 𝐻 → ( ·𝑠𝑤) = · )
14 eqidd 2824 . . . . . . . . . . . . 13 (𝑤 = 𝐻𝑘 = 𝑘)
159oveqd 7175 . . . . . . . . . . . . 13 (𝑤 = 𝐻 → (𝑦(-g𝑤)𝑥) = (𝑦 𝑥))
1613, 14, 15oveq123d 7179 . . . . . . . . . . . 12 (𝑤 = 𝐻 → (𝑘( ·𝑠𝑤)(𝑦(-g𝑤)𝑥)) = (𝑘 · (𝑦 𝑥)))
1710, 16eqeq12d 2839 . . . . . . . . . . 11 (𝑤 = 𝐻 → ((𝑧(-g𝑤)𝑥) = (𝑘( ·𝑠𝑤)(𝑦(-g𝑤)𝑥)) ↔ (𝑧 𝑥) = (𝑘 · (𝑦 𝑥))))
1817rexbidv 3299 . . . . . . . . . 10 (𝑤 = 𝐻 → (∃𝑘 ∈ (0[,]1)(𝑧(-g𝑤)𝑥) = (𝑘( ·𝑠𝑤)(𝑦(-g𝑤)𝑥)) ↔ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))))
196, 18rabeqbidv 3487 . . . . . . . . 9 (𝑤 = 𝐻 → {𝑧 ∈ (Base‘𝑤) ∣ ∃𝑘 ∈ (0[,]1)(𝑧(-g𝑤)𝑥) = (𝑘( ·𝑠𝑤)(𝑦(-g𝑤)𝑥))} = {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})
206, 6, 19mpoeq123dv 7231 . . . . . . . 8 (𝑤 = 𝐻 → (𝑥 ∈ (Base‘𝑤), 𝑦 ∈ (Base‘𝑤) ↦ {𝑧 ∈ (Base‘𝑤) ∣ ∃𝑘 ∈ (0[,]1)(𝑧(-g𝑤)𝑥) = (𝑘( ·𝑠𝑤)(𝑦(-g𝑤)𝑥))}) = (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))}))
2120csbeq1d 3889 . . . . . . 7 (𝑤 = 𝐻(𝑥 ∈ (Base‘𝑤), 𝑦 ∈ (Base‘𝑤) ↦ {𝑧 ∈ (Base‘𝑤) ∣ ∃𝑘 ∈ (0[,]1)(𝑧(-g𝑤)𝑥) = (𝑘( ·𝑠𝑤)(𝑦(-g𝑤)𝑥))}) / 𝑖((𝑤 sSet ⟨(Itv‘ndx), 𝑖⟩) sSet ⟨(LineG‘ndx), (𝑥 ∈ (Base‘𝑤), 𝑦 ∈ (Base‘𝑤) ↦ {𝑧 ∈ (Base‘𝑤) ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})⟩) = (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))}) / 𝑖((𝑤 sSet ⟨(Itv‘ndx), 𝑖⟩) sSet ⟨(LineG‘ndx), (𝑥 ∈ (Base‘𝑤), 𝑦 ∈ (Base‘𝑤) ↦ {𝑧 ∈ (Base‘𝑤) ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})⟩))
22 oveq1 7165 . . . . . . . . 9 (𝑤 = 𝐻 → (𝑤 sSet ⟨(Itv‘ndx), 𝑖⟩) = (𝐻 sSet ⟨(Itv‘ndx), 𝑖⟩))
236rabeqdv 3486 . . . . . . . . . . 11 (𝑤 = 𝐻 → {𝑧 ∈ (Base‘𝑤) ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))} = {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})
246, 6, 23mpoeq123dv 7231 . . . . . . . . . 10 (𝑤 = 𝐻 → (𝑥 ∈ (Base‘𝑤), 𝑦 ∈ (Base‘𝑤) ↦ {𝑧 ∈ (Base‘𝑤) ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))}) = (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))}))
2524opeq2d 4812 . . . . . . . . 9 (𝑤 = 𝐻 → ⟨(LineG‘ndx), (𝑥 ∈ (Base‘𝑤), 𝑦 ∈ (Base‘𝑤) ↦ {𝑧 ∈ (Base‘𝑤) ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})⟩ = ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})⟩)
2622, 25oveq12d 7176 . . . . . . . 8 (𝑤 = 𝐻 → ((𝑤 sSet ⟨(Itv‘ndx), 𝑖⟩) sSet ⟨(LineG‘ndx), (𝑥 ∈ (Base‘𝑤), 𝑦 ∈ (Base‘𝑤) ↦ {𝑧 ∈ (Base‘𝑤) ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})⟩) = ((𝐻 sSet ⟨(Itv‘ndx), 𝑖⟩) sSet ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})⟩))
2726csbeq2dv 3892 . . . . . . 7 (𝑤 = 𝐻(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))}) / 𝑖((𝑤 sSet ⟨(Itv‘ndx), 𝑖⟩) sSet ⟨(LineG‘ndx), (𝑥 ∈ (Base‘𝑤), 𝑦 ∈ (Base‘𝑤) ↦ {𝑧 ∈ (Base‘𝑤) ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})⟩) = (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))}) / 𝑖((𝐻 sSet ⟨(Itv‘ndx), 𝑖⟩) sSet ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})⟩))
2821, 27eqtrd 2858 . . . . . 6 (𝑤 = 𝐻(𝑥 ∈ (Base‘𝑤), 𝑦 ∈ (Base‘𝑤) ↦ {𝑧 ∈ (Base‘𝑤) ∣ ∃𝑘 ∈ (0[,]1)(𝑧(-g𝑤)𝑥) = (𝑘( ·𝑠𝑤)(𝑦(-g𝑤)𝑥))}) / 𝑖((𝑤 sSet ⟨(Itv‘ndx), 𝑖⟩) sSet ⟨(LineG‘ndx), (𝑥 ∈ (Base‘𝑤), 𝑦 ∈ (Base‘𝑤) ↦ {𝑧 ∈ (Base‘𝑤) ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})⟩) = (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))}) / 𝑖((𝐻 sSet ⟨(Itv‘ndx), 𝑖⟩) sSet ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})⟩))
29 df-ttg 26662 . . . . . 6 toTG = (𝑤 ∈ V ↦ (𝑥 ∈ (Base‘𝑤), 𝑦 ∈ (Base‘𝑤) ↦ {𝑧 ∈ (Base‘𝑤) ∣ ∃𝑘 ∈ (0[,]1)(𝑧(-g𝑤)𝑥) = (𝑘( ·𝑠𝑤)(𝑦(-g𝑤)𝑥))}) / 𝑖((𝑤 sSet ⟨(Itv‘ndx), 𝑖⟩) sSet ⟨(LineG‘ndx), (𝑥 ∈ (Base‘𝑤), 𝑦 ∈ (Base‘𝑤) ↦ {𝑧 ∈ (Base‘𝑤) ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})⟩))
30 ovex 7191 . . . . . . 7 ((𝐻 sSet ⟨(Itv‘ndx), 𝑖⟩) sSet ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})⟩) ∈ V
3130csbex 5217 . . . . . 6 (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))}) / 𝑖((𝐻 sSet ⟨(Itv‘ndx), 𝑖⟩) sSet ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})⟩) ∈ V
3228, 29, 31fvmpt 6770 . . . . 5 (𝐻 ∈ V → (toTG‘𝐻) = (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))}) / 𝑖((𝐻 sSet ⟨(Itv‘ndx), 𝑖⟩) sSet ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})⟩))
333, 32syl 17 . . . 4 (𝐻𝑉 → (toTG‘𝐻) = (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))}) / 𝑖((𝐻 sSet ⟨(Itv‘ndx), 𝑖⟩) sSet ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})⟩))
345fvexi 6686 . . . . . . 7 𝐵 ∈ V
3534, 34mpoex 7779 . . . . . 6 (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))}) ∈ V
3635a1i 11 . . . . 5 (𝐻𝑉 → (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))}) ∈ V)
37 simpr 487 . . . . . . 7 ((𝐻𝑉𝑖 = (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})) → 𝑖 = (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))}))
38 oveq2 7166 . . . . . . . . . . 11 (𝑎 = 𝑥 → (𝑐 𝑎) = (𝑐 𝑥))
39 oveq2 7166 . . . . . . . . . . . 12 (𝑎 = 𝑥 → (𝑏 𝑎) = (𝑏 𝑥))
4039oveq2d 7174 . . . . . . . . . . 11 (𝑎 = 𝑥 → (𝑘 · (𝑏 𝑎)) = (𝑘 · (𝑏 𝑥)))
4138, 40eqeq12d 2839 . . . . . . . . . 10 (𝑎 = 𝑥 → ((𝑐 𝑎) = (𝑘 · (𝑏 𝑎)) ↔ (𝑐 𝑥) = (𝑘 · (𝑏 𝑥))))
4241rexbidv 3299 . . . . . . . . 9 (𝑎 = 𝑥 → (∃𝑘 ∈ (0[,]1)(𝑐 𝑎) = (𝑘 · (𝑏 𝑎)) ↔ ∃𝑘 ∈ (0[,]1)(𝑐 𝑥) = (𝑘 · (𝑏 𝑥))))
4342rabbidv 3482 . . . . . . . 8 (𝑎 = 𝑥 → {𝑐𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 𝑎) = (𝑘 · (𝑏 𝑎))} = {𝑐𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 𝑥) = (𝑘 · (𝑏 𝑥))})
44 oveq1 7165 . . . . . . . . . . . . 13 (𝑏 = 𝑦 → (𝑏 𝑥) = (𝑦 𝑥))
4544oveq2d 7174 . . . . . . . . . . . 12 (𝑏 = 𝑦 → (𝑘 · (𝑏 𝑥)) = (𝑘 · (𝑦 𝑥)))
4645eqeq2d 2834 . . . . . . . . . . 11 (𝑏 = 𝑦 → ((𝑐 𝑥) = (𝑘 · (𝑏 𝑥)) ↔ (𝑐 𝑥) = (𝑘 · (𝑦 𝑥))))
4746rexbidv 3299 . . . . . . . . . 10 (𝑏 = 𝑦 → (∃𝑘 ∈ (0[,]1)(𝑐 𝑥) = (𝑘 · (𝑏 𝑥)) ↔ ∃𝑘 ∈ (0[,]1)(𝑐 𝑥) = (𝑘 · (𝑦 𝑥))))
4847rabbidv 3482 . . . . . . . . 9 (𝑏 = 𝑦 → {𝑐𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 𝑥) = (𝑘 · (𝑏 𝑥))} = {𝑐𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 𝑥) = (𝑘 · (𝑦 𝑥))})
49 oveq1 7165 . . . . . . . . . . . 12 (𝑐 = 𝑧 → (𝑐 𝑥) = (𝑧 𝑥))
5049eqeq1d 2825 . . . . . . . . . . 11 (𝑐 = 𝑧 → ((𝑐 𝑥) = (𝑘 · (𝑦 𝑥)) ↔ (𝑧 𝑥) = (𝑘 · (𝑦 𝑥))))
5150rexbidv 3299 . . . . . . . . . 10 (𝑐 = 𝑧 → (∃𝑘 ∈ (0[,]1)(𝑐 𝑥) = (𝑘 · (𝑦 𝑥)) ↔ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))))
5251cbvrabv 3493 . . . . . . . . 9 {𝑐𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 𝑥) = (𝑘 · (𝑦 𝑥))} = {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))}
5348, 52syl6eq 2874 . . . . . . . 8 (𝑏 = 𝑦 → {𝑐𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 𝑥) = (𝑘 · (𝑏 𝑥))} = {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})
5443, 53cbvmpov 7251 . . . . . . 7 (𝑎𝐵, 𝑏𝐵 ↦ {𝑐𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 𝑎) = (𝑘 · (𝑏 𝑎))}) = (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})
5537, 54syl6eqr 2876 . . . . . 6 ((𝐻𝑉𝑖 = (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})) → 𝑖 = (𝑎𝐵, 𝑏𝐵 ↦ {𝑐𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 𝑎) = (𝑘 · (𝑏 𝑎))}))
56 simpr 487 . . . . . . . . . 10 ((𝐻𝑉𝑖 = (𝑎𝐵, 𝑏𝐵 ↦ {𝑐𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 𝑎) = (𝑘 · (𝑏 𝑎))})) → 𝑖 = (𝑎𝐵, 𝑏𝐵 ↦ {𝑐𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 𝑎) = (𝑘 · (𝑏 𝑎))}))
5756, 54syl6eq 2874 . . . . . . . . 9 ((𝐻𝑉𝑖 = (𝑎𝐵, 𝑏𝐵 ↦ {𝑐𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 𝑎) = (𝑘 · (𝑏 𝑎))})) → 𝑖 = (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))}))
5857opeq2d 4812 . . . . . . . 8 ((𝐻𝑉𝑖 = (𝑎𝐵, 𝑏𝐵 ↦ {𝑐𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 𝑎) = (𝑘 · (𝑏 𝑎))})) → ⟨(Itv‘ndx), 𝑖⟩ = ⟨(Itv‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})⟩)
5958oveq2d 7174 . . . . . . 7 ((𝐻𝑉𝑖 = (𝑎𝐵, 𝑏𝐵 ↦ {𝑐𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 𝑎) = (𝑘 · (𝑏 𝑎))})) → (𝐻 sSet ⟨(Itv‘ndx), 𝑖⟩) = (𝐻 sSet ⟨(Itv‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})⟩))
6057oveqd 7175 . . . . . . . . . . . 12 ((𝐻𝑉𝑖 = (𝑎𝐵, 𝑏𝐵 ↦ {𝑐𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 𝑎) = (𝑘 · (𝑏 𝑎))})) → (𝑥𝑖𝑦) = (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦))
6160eleq2d 2900 . . . . . . . . . . 11 ((𝐻𝑉𝑖 = (𝑎𝐵, 𝑏𝐵 ↦ {𝑐𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 𝑎) = (𝑘 · (𝑏 𝑎))})) → (𝑧 ∈ (𝑥𝑖𝑦) ↔ 𝑧 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦)))
6257oveqd 7175 . . . . . . . . . . . 12 ((𝐻𝑉𝑖 = (𝑎𝐵, 𝑏𝐵 ↦ {𝑐𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 𝑎) = (𝑘 · (𝑏 𝑎))})) → (𝑧𝑖𝑦) = (𝑧(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦))
6362eleq2d 2900 . . . . . . . . . . 11 ((𝐻𝑉𝑖 = (𝑎𝐵, 𝑏𝐵 ↦ {𝑐𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 𝑎) = (𝑘 · (𝑏 𝑎))})) → (𝑥 ∈ (𝑧𝑖𝑦) ↔ 𝑥 ∈ (𝑧(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦)))
6457oveqd 7175 . . . . . . . . . . . 12 ((𝐻𝑉𝑖 = (𝑎𝐵, 𝑏𝐵 ↦ {𝑐𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 𝑎) = (𝑘 · (𝑏 𝑎))})) → (𝑥𝑖𝑧) = (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑧))
6564eleq2d 2900 . . . . . . . . . . 11 ((𝐻𝑉𝑖 = (𝑎𝐵, 𝑏𝐵 ↦ {𝑐𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 𝑎) = (𝑘 · (𝑏 𝑎))})) → (𝑦 ∈ (𝑥𝑖𝑧) ↔ 𝑦 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑧)))
6661, 63, 653orbi123d 1431 . . . . . . . . . 10 ((𝐻𝑉𝑖 = (𝑎𝐵, 𝑏𝐵 ↦ {𝑐𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 𝑎) = (𝑘 · (𝑏 𝑎))})) → ((𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧)) ↔ (𝑧 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑥 ∈ (𝑧(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑦 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑧))))
6766rabbidv 3482 . . . . . . . . 9 ((𝐻𝑉𝑖 = (𝑎𝐵, 𝑏𝐵 ↦ {𝑐𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 𝑎) = (𝑘 · (𝑏 𝑎))})) → {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))} = {𝑧𝐵 ∣ (𝑧 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑥 ∈ (𝑧(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑦 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑧))})
6867mpoeq3dv 7235 . . . . . . . 8 ((𝐻𝑉𝑖 = (𝑎𝐵, 𝑏𝐵 ↦ {𝑐𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 𝑎) = (𝑘 · (𝑏 𝑎))})) → (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))}) = (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑥 ∈ (𝑧(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑦 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑧))}))
6968opeq2d 4812 . . . . . . 7 ((𝐻𝑉𝑖 = (𝑎𝐵, 𝑏𝐵 ↦ {𝑐𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 𝑎) = (𝑘 · (𝑏 𝑎))})) → ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})⟩ = ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑥 ∈ (𝑧(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑦 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑧))})⟩)
7059, 69oveq12d 7176 . . . . . 6 ((𝐻𝑉𝑖 = (𝑎𝐵, 𝑏𝐵 ↦ {𝑐𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 𝑎) = (𝑘 · (𝑏 𝑎))})) → ((𝐻 sSet ⟨(Itv‘ndx), 𝑖⟩) sSet ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})⟩) = ((𝐻 sSet ⟨(Itv‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})⟩) sSet ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑥 ∈ (𝑧(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑦 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑧))})⟩))
7155, 70syldan 593 . . . . 5 ((𝐻𝑉𝑖 = (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})) → ((𝐻 sSet ⟨(Itv‘ndx), 𝑖⟩) sSet ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})⟩) = ((𝐻 sSet ⟨(Itv‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})⟩) sSet ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑥 ∈ (𝑧(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑦 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑧))})⟩))
7236, 71csbied 3921 . . . 4 (𝐻𝑉(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))}) / 𝑖((𝐻 sSet ⟨(Itv‘ndx), 𝑖⟩) sSet ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})⟩) = ((𝐻 sSet ⟨(Itv‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})⟩) sSet ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑥 ∈ (𝑧(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑦 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑧))})⟩))
732, 33, 723eqtrd 2862 . . 3 (𝐻𝑉𝐺 = ((𝐻 sSet ⟨(Itv‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})⟩) sSet ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑥 ∈ (𝑧(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑦 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑧))})⟩))
7473fveq2d 6676 . . . . . . . . . . . 12 (𝐻𝑉 → (Itv‘𝐺) = (Itv‘((𝐻 sSet ⟨(Itv‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})⟩) sSet ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑥 ∈ (𝑧(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑦 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑧))})⟩)))
75 itvid 26230 . . . . . . . . . . . . 13 Itv = Slot (Itv‘ndx)
76 1nn0 11916 . . . . . . . . . . . . . . . . 17 1 ∈ ℕ0
77 6nn 11729 . . . . . . . . . . . . . . . . 17 6 ∈ ℕ
7876, 77decnncl 12121 . . . . . . . . . . . . . . . 16 16 ∈ ℕ
7978nnrei 11649 . . . . . . . . . . . . . . 15 16 ∈ ℝ
80 6nn0 11921 . . . . . . . . . . . . . . . 16 6 ∈ ℕ0
81 7nn 11732 . . . . . . . . . . . . . . . 16 7 ∈ ℕ
82 6lt7 11826 . . . . . . . . . . . . . . . 16 6 < 7
8376, 80, 81, 82declt 12129 . . . . . . . . . . . . . . 15 16 < 17
8479, 83ltneii 10755 . . . . . . . . . . . . . 14 16 ≠ 17
85 itvndx 26228 . . . . . . . . . . . . . . 15 (Itv‘ndx) = 16
86 lngndx 26229 . . . . . . . . . . . . . . 15 (LineG‘ndx) = 17
8785, 86neeq12i 3084 . . . . . . . . . . . . . 14 ((Itv‘ndx) ≠ (LineG‘ndx) ↔ 16 ≠ 17)
8884, 87mpbir 233 . . . . . . . . . . . . 13 (Itv‘ndx) ≠ (LineG‘ndx)
8975, 88setsnid 16541 . . . . . . . . . . . 12 (Itv‘(𝐻 sSet ⟨(Itv‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})⟩)) = (Itv‘((𝐻 sSet ⟨(Itv‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})⟩) sSet ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑥 ∈ (𝑧(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑦 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑧))})⟩))
9074, 89syl6eqr 2876 . . . . . . . . . . 11 (𝐻𝑉 → (Itv‘𝐺) = (Itv‘(𝐻 sSet ⟨(Itv‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})⟩)))
91 ttgval.i . . . . . . . . . . . 12 𝐼 = (Itv‘𝐺)
9291a1i 11 . . . . . . . . . . 11 (𝐻𝑉𝐼 = (Itv‘𝐺))
9375setsid 16540 . . . . . . . . . . . 12 ((𝐻𝑉 ∧ (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))}) ∈ V) → (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))}) = (Itv‘(𝐻 sSet ⟨(Itv‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})⟩)))
9435, 93mpan2 689 . . . . . . . . . . 11 (𝐻𝑉 → (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))}) = (Itv‘(𝐻 sSet ⟨(Itv‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})⟩)))
9590, 92, 943eqtr4d 2868 . . . . . . . . . 10 (𝐻𝑉𝐼 = (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))}))
9695oveqd 7175 . . . . . . . . 9 (𝐻𝑉 → (𝑥𝐼𝑦) = (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦))
9796eleq2d 2900 . . . . . . . 8 (𝐻𝑉 → (𝑧 ∈ (𝑥𝐼𝑦) ↔ 𝑧 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦)))
9895oveqd 7175 . . . . . . . . 9 (𝐻𝑉 → (𝑧𝐼𝑦) = (𝑧(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦))
9998eleq2d 2900 . . . . . . . 8 (𝐻𝑉 → (𝑥 ∈ (𝑧𝐼𝑦) ↔ 𝑥 ∈ (𝑧(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦)))
10095oveqd 7175 . . . . . . . . 9 (𝐻𝑉 → (𝑥𝐼𝑧) = (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑧))
101100eleq2d 2900 . . . . . . . 8 (𝐻𝑉 → (𝑦 ∈ (𝑥𝐼𝑧) ↔ 𝑦 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑧)))
10297, 99, 1013orbi123d 1431 . . . . . . 7 (𝐻𝑉 → ((𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)) ↔ (𝑧 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑥 ∈ (𝑧(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑦 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑧))))
103102rabbidv 3482 . . . . . 6 (𝐻𝑉 → {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))} = {𝑧𝐵 ∣ (𝑧 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑥 ∈ (𝑧(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑦 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑧))})
104103mpoeq3dv 7235 . . . . 5 (𝐻𝑉 → (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}) = (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑥 ∈ (𝑧(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑦 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑧))}))
105104opeq2d 4812 . . . 4 (𝐻𝑉 → ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))})⟩ = ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑥 ∈ (𝑧(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑦 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑧))})⟩)
106105oveq2d 7174 . . 3 (𝐻𝑉 → ((𝐻 sSet ⟨(Itv‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})⟩) sSet ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))})⟩) = ((𝐻 sSet ⟨(Itv‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})⟩) sSet ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑥 ∈ (𝑧(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑦 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑧))})⟩))
10773, 106eqtr4d 2861 . 2 (𝐻𝑉𝐺 = ((𝐻 sSet ⟨(Itv‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})⟩) sSet ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))})⟩))
108107, 95jca 514 1 (𝐻𝑉 → (𝐺 = ((𝐻 sSet ⟨(Itv‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})⟩) sSet ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))})⟩) ∧ 𝐼 = (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3o 1082   = wceq 1537  wcel 2114  wne 3018  wrex 3141  {crab 3144  Vcvv 3496  csb 3885  cop 4575  cfv 6357  (class class class)co 7158  cmpo 7160  0cc0 10539  1c1 10540  6c6 11699  7c7 11700  cdc 12101  [,]cicc 12744  ndxcnx 16482   sSet csts 16483  Basecbs 16485   ·𝑠 cvsca 16571  -gcsg 18107  Itvcitv 26224  LineGclng 26225  toTGcttg 26661
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-dec 12102  df-ndx 16488  df-slot 16489  df-sets 16492  df-itv 26226  df-lng 26227  df-ttg 26662
This theorem is referenced by:  ttglem  26664  ttgitvval  26670
  Copyright terms: Public domain W3C validator