MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  txmetcnp Structured version   Visualization version   GIF version

Theorem txmetcnp 22442
Description: Continuity of a binary operation on metric spaces. (Contributed by Mario Carneiro, 2-Sep-2015.)
Hypotheses
Ref Expression
metcn.2 𝐽 = (MetOpen‘𝐶)
metcn.4 𝐾 = (MetOpen‘𝐷)
txmetcnp.4 𝐿 = (MetOpen‘𝐸)
Assertion
Ref Expression
txmetcnp (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) → (𝐹 ∈ (((𝐽 ×t 𝐾) CnP 𝐿)‘⟨𝐴, 𝐵⟩) ↔ (𝐹:(𝑋 × 𝑌)⟶𝑍 ∧ ∀𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑢𝑋𝑣𝑌 (((𝐴𝐶𝑢) < 𝑤 ∧ (𝐵𝐷𝑣) < 𝑤) → ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧))))
Distinct variable groups:   𝑣,𝑢,𝑤,𝑧,𝐹   𝑢,𝐽,𝑣,𝑤,𝑧   𝑢,𝐾,𝑣,𝑤,𝑧   𝑢,𝑋,𝑣,𝑤,𝑧   𝑢,𝑌,𝑣,𝑤,𝑧   𝑢,𝑍,𝑣,𝑤,𝑧   𝑢,𝐴,𝑣,𝑤,𝑧   𝑢,𝐶,𝑣,𝑤,𝑧   𝑢,𝐷,𝑣,𝑤,𝑧   𝑢,𝐵,𝑣,𝑤,𝑧   𝑢,𝐸,𝑣,𝑤,𝑧   𝑤,𝐿,𝑧
Allowed substitution hints:   𝐿(𝑣,𝑢)

Proof of Theorem txmetcnp
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2692 . . . 4 (dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷))) = (dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))
2 simpl1 1146 . . . 4 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) → 𝐶 ∈ (∞Met‘𝑋))
3 simpl2 1147 . . . 4 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) → 𝐷 ∈ (∞Met‘𝑌))
41, 2, 3tmsxps 22431 . . 3 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) → (dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷))) ∈ (∞Met‘(𝑋 × 𝑌)))
5 simpl3 1148 . . 3 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) → 𝐸 ∈ (∞Met‘𝑍))
6 opelxpi 5225 . . . 4 ((𝐴𝑋𝐵𝑌) → ⟨𝐴, 𝐵⟩ ∈ (𝑋 × 𝑌))
76adantl 473 . . 3 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) → ⟨𝐴, 𝐵⟩ ∈ (𝑋 × 𝑌))
8 eqid 2692 . . . 4 (MetOpen‘(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))) = (MetOpen‘(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷))))
9 txmetcnp.4 . . . 4 𝐿 = (MetOpen‘𝐸)
108, 9metcnp 22436 . . 3 (((dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷))) ∈ (∞Met‘(𝑋 × 𝑌)) ∧ 𝐸 ∈ (∞Met‘𝑍) ∧ ⟨𝐴, 𝐵⟩ ∈ (𝑋 × 𝑌)) → (𝐹 ∈ (((MetOpen‘(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))) CnP 𝐿)‘⟨𝐴, 𝐵⟩) ↔ (𝐹:(𝑋 × 𝑌)⟶𝑍 ∧ ∀𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑥 ∈ (𝑋 × 𝑌)((⟨𝐴, 𝐵⟩(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))𝑥) < 𝑤 → ((𝐹‘⟨𝐴, 𝐵⟩)𝐸(𝐹𝑥)) < 𝑧))))
114, 5, 7, 10syl3anc 1407 . 2 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) → (𝐹 ∈ (((MetOpen‘(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))) CnP 𝐿)‘⟨𝐴, 𝐵⟩) ↔ (𝐹:(𝑋 × 𝑌)⟶𝑍 ∧ ∀𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑥 ∈ (𝑋 × 𝑌)((⟨𝐴, 𝐵⟩(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))𝑥) < 𝑤 → ((𝐹‘⟨𝐴, 𝐵⟩)𝐸(𝐹𝑥)) < 𝑧))))
12 metcn.2 . . . . . 6 𝐽 = (MetOpen‘𝐶)
13 metcn.4 . . . . . 6 𝐾 = (MetOpen‘𝐷)
141, 2, 3, 12, 13, 8tmsxpsmopn 22432 . . . . 5 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) → (MetOpen‘(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))) = (𝐽 ×t 𝐾))
1514oveq1d 6748 . . . 4 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) → ((MetOpen‘(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))) CnP 𝐿) = ((𝐽 ×t 𝐾) CnP 𝐿))
1615fveq1d 6274 . . 3 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) → (((MetOpen‘(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))) CnP 𝐿)‘⟨𝐴, 𝐵⟩) = (((𝐽 ×t 𝐾) CnP 𝐿)‘⟨𝐴, 𝐵⟩))
1716eleq2d 2757 . 2 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) → (𝐹 ∈ (((MetOpen‘(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))) CnP 𝐿)‘⟨𝐴, 𝐵⟩) ↔ 𝐹 ∈ (((𝐽 ×t 𝐾) CnP 𝐿)‘⟨𝐴, 𝐵⟩)))
18 oveq2 6741 . . . . . . . . 9 (𝑥 = ⟨𝑢, 𝑣⟩ → (⟨𝐴, 𝐵⟩(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))𝑥) = (⟨𝐴, 𝐵⟩(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))⟨𝑢, 𝑣⟩))
1918breq1d 4738 . . . . . . . 8 (𝑥 = ⟨𝑢, 𝑣⟩ → ((⟨𝐴, 𝐵⟩(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))𝑥) < 𝑤 ↔ (⟨𝐴, 𝐵⟩(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))⟨𝑢, 𝑣⟩) < 𝑤))
20 df-ov 6736 . . . . . . . . . . 11 (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩)
2120oveq1i 6743 . . . . . . . . . 10 ((𝐴𝐹𝐵)𝐸(𝐹𝑥)) = ((𝐹‘⟨𝐴, 𝐵⟩)𝐸(𝐹𝑥))
22 fveq2 6272 . . . . . . . . . . . 12 (𝑥 = ⟨𝑢, 𝑣⟩ → (𝐹𝑥) = (𝐹‘⟨𝑢, 𝑣⟩))
23 df-ov 6736 . . . . . . . . . . . 12 (𝑢𝐹𝑣) = (𝐹‘⟨𝑢, 𝑣⟩)
2422, 23syl6eqr 2744 . . . . . . . . . . 11 (𝑥 = ⟨𝑢, 𝑣⟩ → (𝐹𝑥) = (𝑢𝐹𝑣))
2524oveq2d 6749 . . . . . . . . . 10 (𝑥 = ⟨𝑢, 𝑣⟩ → ((𝐴𝐹𝐵)𝐸(𝐹𝑥)) = ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)))
2621, 25syl5eqr 2740 . . . . . . . . 9 (𝑥 = ⟨𝑢, 𝑣⟩ → ((𝐹‘⟨𝐴, 𝐵⟩)𝐸(𝐹𝑥)) = ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)))
2726breq1d 4738 . . . . . . . 8 (𝑥 = ⟨𝑢, 𝑣⟩ → (((𝐹‘⟨𝐴, 𝐵⟩)𝐸(𝐹𝑥)) < 𝑧 ↔ ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧))
2819, 27imbi12d 333 . . . . . . 7 (𝑥 = ⟨𝑢, 𝑣⟩ → (((⟨𝐴, 𝐵⟩(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))𝑥) < 𝑤 → ((𝐹‘⟨𝐴, 𝐵⟩)𝐸(𝐹𝑥)) < 𝑧) ↔ ((⟨𝐴, 𝐵⟩(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))⟨𝑢, 𝑣⟩) < 𝑤 → ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧)))
2928ralxp 5339 . . . . . 6 (∀𝑥 ∈ (𝑋 × 𝑌)((⟨𝐴, 𝐵⟩(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))𝑥) < 𝑤 → ((𝐹‘⟨𝐴, 𝐵⟩)𝐸(𝐹𝑥)) < 𝑧) ↔ ∀𝑢𝑋𝑣𝑌 ((⟨𝐴, 𝐵⟩(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))⟨𝑢, 𝑣⟩) < 𝑤 → ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧))
302ad2antrr 764 . . . . . . . . . . . 12 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) ∧ (𝑤 ∈ ℝ+ ∧ (𝑢𝑋𝑣𝑌))) → 𝐶 ∈ (∞Met‘𝑋))
313ad2antrr 764 . . . . . . . . . . . 12 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) ∧ (𝑤 ∈ ℝ+ ∧ (𝑢𝑋𝑣𝑌))) → 𝐷 ∈ (∞Met‘𝑌))
32 simpllr 817 . . . . . . . . . . . . 13 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) ∧ (𝑤 ∈ ℝ+ ∧ (𝑢𝑋𝑣𝑌))) → (𝐴𝑋𝐵𝑌))
3332simpld 477 . . . . . . . . . . . 12 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) ∧ (𝑤 ∈ ℝ+ ∧ (𝑢𝑋𝑣𝑌))) → 𝐴𝑋)
3432simprd 482 . . . . . . . . . . . 12 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) ∧ (𝑤 ∈ ℝ+ ∧ (𝑢𝑋𝑣𝑌))) → 𝐵𝑌)
35 simprrl 823 . . . . . . . . . . . 12 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) ∧ (𝑤 ∈ ℝ+ ∧ (𝑢𝑋𝑣𝑌))) → 𝑢𝑋)
36 simprrr 824 . . . . . . . . . . . 12 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) ∧ (𝑤 ∈ ℝ+ ∧ (𝑢𝑋𝑣𝑌))) → 𝑣𝑌)
371, 30, 31, 33, 34, 35, 36tmsxpsval2 22434 . . . . . . . . . . 11 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) ∧ (𝑤 ∈ ℝ+ ∧ (𝑢𝑋𝑣𝑌))) → (⟨𝐴, 𝐵⟩(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))⟨𝑢, 𝑣⟩) = if((𝐴𝐶𝑢) ≤ (𝐵𝐷𝑣), (𝐵𝐷𝑣), (𝐴𝐶𝑢)))
3837breq1d 4738 . . . . . . . . . 10 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) ∧ (𝑤 ∈ ℝ+ ∧ (𝑢𝑋𝑣𝑌))) → ((⟨𝐴, 𝐵⟩(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))⟨𝑢, 𝑣⟩) < 𝑤 ↔ if((𝐴𝐶𝑢) ≤ (𝐵𝐷𝑣), (𝐵𝐷𝑣), (𝐴𝐶𝑢)) < 𝑤))
39 xmetcl 22226 . . . . . . . . . . . 12 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝑢𝑋) → (𝐴𝐶𝑢) ∈ ℝ*)
4030, 33, 35, 39syl3anc 1407 . . . . . . . . . . 11 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) ∧ (𝑤 ∈ ℝ+ ∧ (𝑢𝑋𝑣𝑌))) → (𝐴𝐶𝑢) ∈ ℝ*)
41 xmetcl 22226 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑌) ∧ 𝐵𝑌𝑣𝑌) → (𝐵𝐷𝑣) ∈ ℝ*)
4231, 34, 36, 41syl3anc 1407 . . . . . . . . . . 11 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) ∧ (𝑤 ∈ ℝ+ ∧ (𝑢𝑋𝑣𝑌))) → (𝐵𝐷𝑣) ∈ ℝ*)
43 rpxr 11922 . . . . . . . . . . . 12 (𝑤 ∈ ℝ+𝑤 ∈ ℝ*)
4443ad2antrl 766 . . . . . . . . . . 11 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) ∧ (𝑤 ∈ ℝ+ ∧ (𝑢𝑋𝑣𝑌))) → 𝑤 ∈ ℝ*)
45 xrmaxlt 12094 . . . . . . . . . . 11 (((𝐴𝐶𝑢) ∈ ℝ* ∧ (𝐵𝐷𝑣) ∈ ℝ*𝑤 ∈ ℝ*) → (if((𝐴𝐶𝑢) ≤ (𝐵𝐷𝑣), (𝐵𝐷𝑣), (𝐴𝐶𝑢)) < 𝑤 ↔ ((𝐴𝐶𝑢) < 𝑤 ∧ (𝐵𝐷𝑣) < 𝑤)))
4640, 42, 44, 45syl3anc 1407 . . . . . . . . . 10 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) ∧ (𝑤 ∈ ℝ+ ∧ (𝑢𝑋𝑣𝑌))) → (if((𝐴𝐶𝑢) ≤ (𝐵𝐷𝑣), (𝐵𝐷𝑣), (𝐴𝐶𝑢)) < 𝑤 ↔ ((𝐴𝐶𝑢) < 𝑤 ∧ (𝐵𝐷𝑣) < 𝑤)))
4738, 46bitrd 268 . . . . . . . . 9 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) ∧ (𝑤 ∈ ℝ+ ∧ (𝑢𝑋𝑣𝑌))) → ((⟨𝐴, 𝐵⟩(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))⟨𝑢, 𝑣⟩) < 𝑤 ↔ ((𝐴𝐶𝑢) < 𝑤 ∧ (𝐵𝐷𝑣) < 𝑤)))
4847imbi1d 330 . . . . . . . 8 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) ∧ (𝑤 ∈ ℝ+ ∧ (𝑢𝑋𝑣𝑌))) → (((⟨𝐴, 𝐵⟩(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))⟨𝑢, 𝑣⟩) < 𝑤 → ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧) ↔ (((𝐴𝐶𝑢) < 𝑤 ∧ (𝐵𝐷𝑣) < 𝑤) → ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧)))
4948anassrs 683 . . . . . . 7 ((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) ∧ 𝑤 ∈ ℝ+) ∧ (𝑢𝑋𝑣𝑌)) → (((⟨𝐴, 𝐵⟩(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))⟨𝑢, 𝑣⟩) < 𝑤 → ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧) ↔ (((𝐴𝐶𝑢) < 𝑤 ∧ (𝐵𝐷𝑣) < 𝑤) → ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧)))
50492ralbidva 3058 . . . . . 6 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) ∧ 𝑤 ∈ ℝ+) → (∀𝑢𝑋𝑣𝑌 ((⟨𝐴, 𝐵⟩(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))⟨𝑢, 𝑣⟩) < 𝑤 → ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧) ↔ ∀𝑢𝑋𝑣𝑌 (((𝐴𝐶𝑢) < 𝑤 ∧ (𝐵𝐷𝑣) < 𝑤) → ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧)))
5129, 50syl5bb 272 . . . . 5 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) ∧ 𝑤 ∈ ℝ+) → (∀𝑥 ∈ (𝑋 × 𝑌)((⟨𝐴, 𝐵⟩(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))𝑥) < 𝑤 → ((𝐹‘⟨𝐴, 𝐵⟩)𝐸(𝐹𝑥)) < 𝑧) ↔ ∀𝑢𝑋𝑣𝑌 (((𝐴𝐶𝑢) < 𝑤 ∧ (𝐵𝐷𝑣) < 𝑤) → ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧)))
5251rexbidva 3119 . . . 4 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) → (∃𝑤 ∈ ℝ+𝑥 ∈ (𝑋 × 𝑌)((⟨𝐴, 𝐵⟩(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))𝑥) < 𝑤 → ((𝐹‘⟨𝐴, 𝐵⟩)𝐸(𝐹𝑥)) < 𝑧) ↔ ∃𝑤 ∈ ℝ+𝑢𝑋𝑣𝑌 (((𝐴𝐶𝑢) < 𝑤 ∧ (𝐵𝐷𝑣) < 𝑤) → ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧)))
5352ralbidv 3056 . . 3 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) → (∀𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑥 ∈ (𝑋 × 𝑌)((⟨𝐴, 𝐵⟩(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))𝑥) < 𝑤 → ((𝐹‘⟨𝐴, 𝐵⟩)𝐸(𝐹𝑥)) < 𝑧) ↔ ∀𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑢𝑋𝑣𝑌 (((𝐴𝐶𝑢) < 𝑤 ∧ (𝐵𝐷𝑣) < 𝑤) → ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧)))
5453pm5.32da 676 . 2 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) → ((𝐹:(𝑋 × 𝑌)⟶𝑍 ∧ ∀𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑥 ∈ (𝑋 × 𝑌)((⟨𝐴, 𝐵⟩(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))𝑥) < 𝑤 → ((𝐹‘⟨𝐴, 𝐵⟩)𝐸(𝐹𝑥)) < 𝑧)) ↔ (𝐹:(𝑋 × 𝑌)⟶𝑍 ∧ ∀𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑢𝑋𝑣𝑌 (((𝐴𝐶𝑢) < 𝑤 ∧ (𝐵𝐷𝑣) < 𝑤) → ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧))))
5511, 17, 543bitr3d 298 1 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) → (𝐹 ∈ (((𝐽 ×t 𝐾) CnP 𝐿)‘⟨𝐴, 𝐵⟩) ↔ (𝐹:(𝑋 × 𝑌)⟶𝑍 ∧ ∀𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑢𝑋𝑣𝑌 (((𝐴𝐶𝑢) < 𝑤 ∧ (𝐵𝐷𝑣) < 𝑤) → ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1564  wcel 2071  wral 2982  wrex 2983  ifcif 4162  cop 4259   class class class wbr 4728   × cxp 5184  wf 5965  cfv 5969  (class class class)co 6733  *cxr 10154   < clt 10155  cle 10156  +crp 11914  distcds 16041   ×s cxps 16257  ∞Metcxmt 19822  MetOpencmopn 19827   CnP ccnp 21120   ×t ctx 21454  toMetSpctmt 22214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1818  ax-5 1920  ax-6 1986  ax-7 2022  ax-8 2073  ax-9 2080  ax-10 2100  ax-11 2115  ax-12 2128  ax-13 2323  ax-ext 2672  ax-rep 4847  ax-sep 4857  ax-nul 4865  ax-pow 4916  ax-pr 4979  ax-un 7034  ax-inf2 8619  ax-cnex 10073  ax-resscn 10074  ax-1cn 10075  ax-icn 10076  ax-addcl 10077  ax-addrcl 10078  ax-mulcl 10079  ax-mulrcl 10080  ax-mulcom 10081  ax-addass 10082  ax-mulass 10083  ax-distr 10084  ax-i2m1 10085  ax-1ne0 10086  ax-1rid 10087  ax-rnegex 10088  ax-rrecex 10089  ax-cnre 10090  ax-pre-lttri 10091  ax-pre-lttrn 10092  ax-pre-ltadd 10093  ax-pre-mulgt0 10094  ax-pre-sup 10095
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1567  df-ex 1786  df-nf 1791  df-sb 1979  df-eu 2543  df-mo 2544  df-clab 2679  df-cleq 2685  df-clel 2688  df-nfc 2823  df-ne 2865  df-nel 2968  df-ral 2987  df-rex 2988  df-reu 2989  df-rmo 2990  df-rab 2991  df-v 3274  df-sbc 3510  df-csb 3608  df-dif 3651  df-un 3653  df-in 3655  df-ss 3662  df-pss 3664  df-nul 3992  df-if 4163  df-pw 4236  df-sn 4254  df-pr 4256  df-tp 4258  df-op 4260  df-uni 4513  df-int 4552  df-iun 4598  df-iin 4599  df-br 4729  df-opab 4789  df-mpt 4806  df-tr 4829  df-id 5096  df-eprel 5101  df-po 5107  df-so 5108  df-fr 5145  df-se 5146  df-we 5147  df-xp 5192  df-rel 5193  df-cnv 5194  df-co 5195  df-dm 5196  df-rn 5197  df-res 5198  df-ima 5199  df-pred 5761  df-ord 5807  df-on 5808  df-lim 5809  df-suc 5810  df-iota 5932  df-fun 5971  df-fn 5972  df-f 5973  df-f1 5974  df-fo 5975  df-f1o 5976  df-fv 5977  df-isom 5978  df-riota 6694  df-ov 6736  df-oprab 6737  df-mpt2 6738  df-of 6982  df-om 7151  df-1st 7253  df-2nd 7254  df-supp 7384  df-wrecs 7495  df-recs 7556  df-rdg 7594  df-1o 7648  df-2o 7649  df-oadd 7652  df-er 7830  df-map 7944  df-ixp 7994  df-en 8041  df-dom 8042  df-sdom 8043  df-fin 8044  df-fsupp 8360  df-fi 8401  df-sup 8432  df-inf 8433  df-oi 8499  df-card 8846  df-cda 9071  df-pnf 10157  df-mnf 10158  df-xr 10159  df-ltxr 10160  df-le 10161  df-sub 10349  df-neg 10350  df-div 10766  df-nn 11102  df-2 11160  df-3 11161  df-4 11162  df-5 11163  df-6 11164  df-7 11165  df-8 11166  df-9 11167  df-n0 11374  df-z 11459  df-dec 11575  df-uz 11769  df-q 11871  df-rp 11915  df-xneg 12028  df-xadd 12029  df-xmul 12030  df-icc 12264  df-fz 12409  df-fzo 12549  df-seq 12885  df-hash 13201  df-struct 15950  df-ndx 15951  df-slot 15952  df-base 15954  df-sets 15955  df-ress 15956  df-plusg 16045  df-mulr 16046  df-sca 16048  df-vsca 16049  df-ip 16050  df-tset 16051  df-ple 16052  df-ds 16055  df-hom 16057  df-cco 16058  df-rest 16174  df-topn 16175  df-0g 16193  df-gsum 16194  df-topgen 16195  df-pt 16196  df-prds 16199  df-xrs 16253  df-qtop 16258  df-imas 16259  df-xps 16261  df-mre 16337  df-mrc 16338  df-acs 16340  df-mgm 17332  df-sgrp 17374  df-mnd 17385  df-submnd 17426  df-mulg 17631  df-cntz 17839  df-cmn 18284  df-psmet 19829  df-xmet 19830  df-bl 19832  df-mopn 19833  df-top 20790  df-topon 20807  df-topsp 20828  df-bases 20841  df-cn 21122  df-cnp 21123  df-tx 21456  df-hmeo 21649  df-xms 22215  df-tms 22217
This theorem is referenced by:  txmetcn  22443  cxpcn3  24577
  Copyright terms: Public domain W3C validator