Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  txmetcnp Structured version   Visualization version   GIF version

Theorem txmetcnp 22257
 Description: Continuity of a binary operation on metric spaces. (Contributed by Mario Carneiro, 2-Sep-2015.)
Hypotheses
Ref Expression
metcn.2 𝐽 = (MetOpen‘𝐶)
metcn.4 𝐾 = (MetOpen‘𝐷)
txmetcnp.4 𝐿 = (MetOpen‘𝐸)
Assertion
Ref Expression
txmetcnp (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) → (𝐹 ∈ (((𝐽 ×t 𝐾) CnP 𝐿)‘⟨𝐴, 𝐵⟩) ↔ (𝐹:(𝑋 × 𝑌)⟶𝑍 ∧ ∀𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑢𝑋𝑣𝑌 (((𝐴𝐶𝑢) < 𝑤 ∧ (𝐵𝐷𝑣) < 𝑤) → ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧))))
Distinct variable groups:   𝑣,𝑢,𝑤,𝑧,𝐹   𝑢,𝐽,𝑣,𝑤,𝑧   𝑢,𝐾,𝑣,𝑤,𝑧   𝑢,𝑋,𝑣,𝑤,𝑧   𝑢,𝑌,𝑣,𝑤,𝑧   𝑢,𝑍,𝑣,𝑤,𝑧   𝑢,𝐴,𝑣,𝑤,𝑧   𝑢,𝐶,𝑣,𝑤,𝑧   𝑢,𝐷,𝑣,𝑤,𝑧   𝑢,𝐵,𝑣,𝑤,𝑧   𝑢,𝐸,𝑣,𝑤,𝑧   𝑤,𝐿,𝑧
Allowed substitution hints:   𝐿(𝑣,𝑢)

Proof of Theorem txmetcnp
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2626 . . . 4 (dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷))) = (dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))
2 simpl1 1062 . . . 4 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) → 𝐶 ∈ (∞Met‘𝑋))
3 simpl2 1063 . . . 4 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) → 𝐷 ∈ (∞Met‘𝑌))
41, 2, 3tmsxps 22246 . . 3 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) → (dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷))) ∈ (∞Met‘(𝑋 × 𝑌)))
5 simpl3 1064 . . 3 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) → 𝐸 ∈ (∞Met‘𝑍))
6 opelxpi 5113 . . . 4 ((𝐴𝑋𝐵𝑌) → ⟨𝐴, 𝐵⟩ ∈ (𝑋 × 𝑌))
76adantl 482 . . 3 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) → ⟨𝐴, 𝐵⟩ ∈ (𝑋 × 𝑌))
8 eqid 2626 . . . 4 (MetOpen‘(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))) = (MetOpen‘(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷))))
9 txmetcnp.4 . . . 4 𝐿 = (MetOpen‘𝐸)
108, 9metcnp 22251 . . 3 (((dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷))) ∈ (∞Met‘(𝑋 × 𝑌)) ∧ 𝐸 ∈ (∞Met‘𝑍) ∧ ⟨𝐴, 𝐵⟩ ∈ (𝑋 × 𝑌)) → (𝐹 ∈ (((MetOpen‘(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))) CnP 𝐿)‘⟨𝐴, 𝐵⟩) ↔ (𝐹:(𝑋 × 𝑌)⟶𝑍 ∧ ∀𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑥 ∈ (𝑋 × 𝑌)((⟨𝐴, 𝐵⟩(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))𝑥) < 𝑤 → ((𝐹‘⟨𝐴, 𝐵⟩)𝐸(𝐹𝑥)) < 𝑧))))
114, 5, 7, 10syl3anc 1323 . 2 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) → (𝐹 ∈ (((MetOpen‘(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))) CnP 𝐿)‘⟨𝐴, 𝐵⟩) ↔ (𝐹:(𝑋 × 𝑌)⟶𝑍 ∧ ∀𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑥 ∈ (𝑋 × 𝑌)((⟨𝐴, 𝐵⟩(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))𝑥) < 𝑤 → ((𝐹‘⟨𝐴, 𝐵⟩)𝐸(𝐹𝑥)) < 𝑧))))
12 metcn.2 . . . . . 6 𝐽 = (MetOpen‘𝐶)
13 metcn.4 . . . . . 6 𝐾 = (MetOpen‘𝐷)
141, 2, 3, 12, 13, 8tmsxpsmopn 22247 . . . . 5 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) → (MetOpen‘(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))) = (𝐽 ×t 𝐾))
1514oveq1d 6620 . . . 4 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) → ((MetOpen‘(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))) CnP 𝐿) = ((𝐽 ×t 𝐾) CnP 𝐿))
1615fveq1d 6152 . . 3 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) → (((MetOpen‘(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))) CnP 𝐿)‘⟨𝐴, 𝐵⟩) = (((𝐽 ×t 𝐾) CnP 𝐿)‘⟨𝐴, 𝐵⟩))
1716eleq2d 2689 . 2 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) → (𝐹 ∈ (((MetOpen‘(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))) CnP 𝐿)‘⟨𝐴, 𝐵⟩) ↔ 𝐹 ∈ (((𝐽 ×t 𝐾) CnP 𝐿)‘⟨𝐴, 𝐵⟩)))
18 oveq2 6613 . . . . . . . . 9 (𝑥 = ⟨𝑢, 𝑣⟩ → (⟨𝐴, 𝐵⟩(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))𝑥) = (⟨𝐴, 𝐵⟩(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))⟨𝑢, 𝑣⟩))
1918breq1d 4628 . . . . . . . 8 (𝑥 = ⟨𝑢, 𝑣⟩ → ((⟨𝐴, 𝐵⟩(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))𝑥) < 𝑤 ↔ (⟨𝐴, 𝐵⟩(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))⟨𝑢, 𝑣⟩) < 𝑤))
20 df-ov 6608 . . . . . . . . . . 11 (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩)
2120oveq1i 6615 . . . . . . . . . 10 ((𝐴𝐹𝐵)𝐸(𝐹𝑥)) = ((𝐹‘⟨𝐴, 𝐵⟩)𝐸(𝐹𝑥))
22 fveq2 6150 . . . . . . . . . . . 12 (𝑥 = ⟨𝑢, 𝑣⟩ → (𝐹𝑥) = (𝐹‘⟨𝑢, 𝑣⟩))
23 df-ov 6608 . . . . . . . . . . . 12 (𝑢𝐹𝑣) = (𝐹‘⟨𝑢, 𝑣⟩)
2422, 23syl6eqr 2678 . . . . . . . . . . 11 (𝑥 = ⟨𝑢, 𝑣⟩ → (𝐹𝑥) = (𝑢𝐹𝑣))
2524oveq2d 6621 . . . . . . . . . 10 (𝑥 = ⟨𝑢, 𝑣⟩ → ((𝐴𝐹𝐵)𝐸(𝐹𝑥)) = ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)))
2621, 25syl5eqr 2674 . . . . . . . . 9 (𝑥 = ⟨𝑢, 𝑣⟩ → ((𝐹‘⟨𝐴, 𝐵⟩)𝐸(𝐹𝑥)) = ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)))
2726breq1d 4628 . . . . . . . 8 (𝑥 = ⟨𝑢, 𝑣⟩ → (((𝐹‘⟨𝐴, 𝐵⟩)𝐸(𝐹𝑥)) < 𝑧 ↔ ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧))
2819, 27imbi12d 334 . . . . . . 7 (𝑥 = ⟨𝑢, 𝑣⟩ → (((⟨𝐴, 𝐵⟩(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))𝑥) < 𝑤 → ((𝐹‘⟨𝐴, 𝐵⟩)𝐸(𝐹𝑥)) < 𝑧) ↔ ((⟨𝐴, 𝐵⟩(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))⟨𝑢, 𝑣⟩) < 𝑤 → ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧)))
2928ralxp 5228 . . . . . 6 (∀𝑥 ∈ (𝑋 × 𝑌)((⟨𝐴, 𝐵⟩(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))𝑥) < 𝑤 → ((𝐹‘⟨𝐴, 𝐵⟩)𝐸(𝐹𝑥)) < 𝑧) ↔ ∀𝑢𝑋𝑣𝑌 ((⟨𝐴, 𝐵⟩(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))⟨𝑢, 𝑣⟩) < 𝑤 → ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧))
302ad2antrr 761 . . . . . . . . . . . 12 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) ∧ (𝑤 ∈ ℝ+ ∧ (𝑢𝑋𝑣𝑌))) → 𝐶 ∈ (∞Met‘𝑋))
313ad2antrr 761 . . . . . . . . . . . 12 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) ∧ (𝑤 ∈ ℝ+ ∧ (𝑢𝑋𝑣𝑌))) → 𝐷 ∈ (∞Met‘𝑌))
32 simpllr 798 . . . . . . . . . . . . 13 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) ∧ (𝑤 ∈ ℝ+ ∧ (𝑢𝑋𝑣𝑌))) → (𝐴𝑋𝐵𝑌))
3332simpld 475 . . . . . . . . . . . 12 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) ∧ (𝑤 ∈ ℝ+ ∧ (𝑢𝑋𝑣𝑌))) → 𝐴𝑋)
3432simprd 479 . . . . . . . . . . . 12 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) ∧ (𝑤 ∈ ℝ+ ∧ (𝑢𝑋𝑣𝑌))) → 𝐵𝑌)
35 simprrl 803 . . . . . . . . . . . 12 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) ∧ (𝑤 ∈ ℝ+ ∧ (𝑢𝑋𝑣𝑌))) → 𝑢𝑋)
36 simprrr 804 . . . . . . . . . . . 12 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) ∧ (𝑤 ∈ ℝ+ ∧ (𝑢𝑋𝑣𝑌))) → 𝑣𝑌)
371, 30, 31, 33, 34, 35, 36tmsxpsval2 22249 . . . . . . . . . . 11 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) ∧ (𝑤 ∈ ℝ+ ∧ (𝑢𝑋𝑣𝑌))) → (⟨𝐴, 𝐵⟩(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))⟨𝑢, 𝑣⟩) = if((𝐴𝐶𝑢) ≤ (𝐵𝐷𝑣), (𝐵𝐷𝑣), (𝐴𝐶𝑢)))
3837breq1d 4628 . . . . . . . . . 10 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) ∧ (𝑤 ∈ ℝ+ ∧ (𝑢𝑋𝑣𝑌))) → ((⟨𝐴, 𝐵⟩(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))⟨𝑢, 𝑣⟩) < 𝑤 ↔ if((𝐴𝐶𝑢) ≤ (𝐵𝐷𝑣), (𝐵𝐷𝑣), (𝐴𝐶𝑢)) < 𝑤))
39 xmetcl 22041 . . . . . . . . . . . 12 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝑢𝑋) → (𝐴𝐶𝑢) ∈ ℝ*)
4030, 33, 35, 39syl3anc 1323 . . . . . . . . . . 11 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) ∧ (𝑤 ∈ ℝ+ ∧ (𝑢𝑋𝑣𝑌))) → (𝐴𝐶𝑢) ∈ ℝ*)
41 xmetcl 22041 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑌) ∧ 𝐵𝑌𝑣𝑌) → (𝐵𝐷𝑣) ∈ ℝ*)
4231, 34, 36, 41syl3anc 1323 . . . . . . . . . . 11 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) ∧ (𝑤 ∈ ℝ+ ∧ (𝑢𝑋𝑣𝑌))) → (𝐵𝐷𝑣) ∈ ℝ*)
43 rpxr 11784 . . . . . . . . . . . 12 (𝑤 ∈ ℝ+𝑤 ∈ ℝ*)
4443ad2antrl 763 . . . . . . . . . . 11 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) ∧ (𝑤 ∈ ℝ+ ∧ (𝑢𝑋𝑣𝑌))) → 𝑤 ∈ ℝ*)
45 xrmaxlt 11954 . . . . . . . . . . 11 (((𝐴𝐶𝑢) ∈ ℝ* ∧ (𝐵𝐷𝑣) ∈ ℝ*𝑤 ∈ ℝ*) → (if((𝐴𝐶𝑢) ≤ (𝐵𝐷𝑣), (𝐵𝐷𝑣), (𝐴𝐶𝑢)) < 𝑤 ↔ ((𝐴𝐶𝑢) < 𝑤 ∧ (𝐵𝐷𝑣) < 𝑤)))
4640, 42, 44, 45syl3anc 1323 . . . . . . . . . 10 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) ∧ (𝑤 ∈ ℝ+ ∧ (𝑢𝑋𝑣𝑌))) → (if((𝐴𝐶𝑢) ≤ (𝐵𝐷𝑣), (𝐵𝐷𝑣), (𝐴𝐶𝑢)) < 𝑤 ↔ ((𝐴𝐶𝑢) < 𝑤 ∧ (𝐵𝐷𝑣) < 𝑤)))
4738, 46bitrd 268 . . . . . . . . 9 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) ∧ (𝑤 ∈ ℝ+ ∧ (𝑢𝑋𝑣𝑌))) → ((⟨𝐴, 𝐵⟩(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))⟨𝑢, 𝑣⟩) < 𝑤 ↔ ((𝐴𝐶𝑢) < 𝑤 ∧ (𝐵𝐷𝑣) < 𝑤)))
4847imbi1d 331 . . . . . . . 8 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) ∧ (𝑤 ∈ ℝ+ ∧ (𝑢𝑋𝑣𝑌))) → (((⟨𝐴, 𝐵⟩(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))⟨𝑢, 𝑣⟩) < 𝑤 → ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧) ↔ (((𝐴𝐶𝑢) < 𝑤 ∧ (𝐵𝐷𝑣) < 𝑤) → ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧)))
4948anassrs 679 . . . . . . 7 ((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) ∧ 𝑤 ∈ ℝ+) ∧ (𝑢𝑋𝑣𝑌)) → (((⟨𝐴, 𝐵⟩(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))⟨𝑢, 𝑣⟩) < 𝑤 → ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧) ↔ (((𝐴𝐶𝑢) < 𝑤 ∧ (𝐵𝐷𝑣) < 𝑤) → ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧)))
50492ralbidva 2987 . . . . . 6 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) ∧ 𝑤 ∈ ℝ+) → (∀𝑢𝑋𝑣𝑌 ((⟨𝐴, 𝐵⟩(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))⟨𝑢, 𝑣⟩) < 𝑤 → ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧) ↔ ∀𝑢𝑋𝑣𝑌 (((𝐴𝐶𝑢) < 𝑤 ∧ (𝐵𝐷𝑣) < 𝑤) → ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧)))
5129, 50syl5bb 272 . . . . 5 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) ∧ 𝑤 ∈ ℝ+) → (∀𝑥 ∈ (𝑋 × 𝑌)((⟨𝐴, 𝐵⟩(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))𝑥) < 𝑤 → ((𝐹‘⟨𝐴, 𝐵⟩)𝐸(𝐹𝑥)) < 𝑧) ↔ ∀𝑢𝑋𝑣𝑌 (((𝐴𝐶𝑢) < 𝑤 ∧ (𝐵𝐷𝑣) < 𝑤) → ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧)))
5251rexbidva 3047 . . . 4 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) → (∃𝑤 ∈ ℝ+𝑥 ∈ (𝑋 × 𝑌)((⟨𝐴, 𝐵⟩(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))𝑥) < 𝑤 → ((𝐹‘⟨𝐴, 𝐵⟩)𝐸(𝐹𝑥)) < 𝑧) ↔ ∃𝑤 ∈ ℝ+𝑢𝑋𝑣𝑌 (((𝐴𝐶𝑢) < 𝑤 ∧ (𝐵𝐷𝑣) < 𝑤) → ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧)))
5352ralbidv 2985 . . 3 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) → (∀𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑥 ∈ (𝑋 × 𝑌)((⟨𝐴, 𝐵⟩(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))𝑥) < 𝑤 → ((𝐹‘⟨𝐴, 𝐵⟩)𝐸(𝐹𝑥)) < 𝑧) ↔ ∀𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑢𝑋𝑣𝑌 (((𝐴𝐶𝑢) < 𝑤 ∧ (𝐵𝐷𝑣) < 𝑤) → ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧)))
5453pm5.32da 672 . 2 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) → ((𝐹:(𝑋 × 𝑌)⟶𝑍 ∧ ∀𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑥 ∈ (𝑋 × 𝑌)((⟨𝐴, 𝐵⟩(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))𝑥) < 𝑤 → ((𝐹‘⟨𝐴, 𝐵⟩)𝐸(𝐹𝑥)) < 𝑧)) ↔ (𝐹:(𝑋 × 𝑌)⟶𝑍 ∧ ∀𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑢𝑋𝑣𝑌 (((𝐴𝐶𝑢) < 𝑤 ∧ (𝐵𝐷𝑣) < 𝑤) → ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧))))
5511, 17, 543bitr3d 298 1 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) → (𝐹 ∈ (((𝐽 ×t 𝐾) CnP 𝐿)‘⟨𝐴, 𝐵⟩) ↔ (𝐹:(𝑋 × 𝑌)⟶𝑍 ∧ ∀𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑢𝑋𝑣𝑌 (((𝐴𝐶𝑢) < 𝑤 ∧ (𝐵𝐷𝑣) < 𝑤) → ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 384   ∧ w3a 1036   = wceq 1480   ∈ wcel 1992  ∀wral 2912  ∃wrex 2913  ifcif 4063  ⟨cop 4159   class class class wbr 4618   × cxp 5077  ⟶wf 5846  ‘cfv 5850  (class class class)co 6605  ℝ*cxr 10018   < clt 10019   ≤ cle 10020  ℝ+crp 11776  distcds 15866   ×s cxps 16082  ∞Metcxmt 19645  MetOpencmopn 19650   CnP ccnp 20934   ×t ctx 21268  toMetSpctmt 22029 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-inf2 8483  ax-cnex 9937  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-mulcom 9945  ax-addass 9946  ax-mulass 9947  ax-distr 9948  ax-i2m1 9949  ax-1ne0 9950  ax-1rid 9951  ax-rnegex 9952  ax-rrecex 9953  ax-cnre 9954  ax-pre-lttri 9955  ax-pre-lttrn 9956  ax-pre-ltadd 9957  ax-pre-mulgt0 9958  ax-pre-sup 9959 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-iin 4493  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-isom 5859  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-of 6851  df-om 7014  df-1st 7116  df-2nd 7117  df-supp 7242  df-wrecs 7353  df-recs 7414  df-rdg 7452  df-1o 7506  df-2o 7507  df-oadd 7510  df-er 7688  df-map 7805  df-ixp 7854  df-en 7901  df-dom 7902  df-sdom 7903  df-fin 7904  df-fsupp 8221  df-fi 8262  df-sup 8293  df-inf 8294  df-oi 8360  df-card 8710  df-cda 8935  df-pnf 10021  df-mnf 10022  df-xr 10023  df-ltxr 10024  df-le 10025  df-sub 10213  df-neg 10214  df-div 10630  df-nn 10966  df-2 11024  df-3 11025  df-4 11026  df-5 11027  df-6 11028  df-7 11029  df-8 11030  df-9 11031  df-n0 11238  df-z 11323  df-dec 11438  df-uz 11632  df-q 11733  df-rp 11777  df-xneg 11890  df-xadd 11891  df-xmul 11892  df-icc 12121  df-fz 12266  df-fzo 12404  df-seq 12739  df-hash 13055  df-struct 15778  df-ndx 15779  df-slot 15780  df-base 15781  df-sets 15782  df-ress 15783  df-plusg 15870  df-mulr 15871  df-sca 15873  df-vsca 15874  df-ip 15875  df-tset 15876  df-ple 15877  df-ds 15880  df-hom 15882  df-cco 15883  df-rest 15999  df-topn 16000  df-0g 16018  df-gsum 16019  df-topgen 16020  df-pt 16021  df-prds 16024  df-xrs 16078  df-qtop 16083  df-imas 16084  df-xps 16086  df-mre 16162  df-mrc 16163  df-acs 16165  df-mgm 17158  df-sgrp 17200  df-mnd 17211  df-submnd 17252  df-mulg 17457  df-cntz 17666  df-cmn 18111  df-psmet 19652  df-xmet 19653  df-bl 19655  df-mopn 19656  df-top 20616  df-bases 20617  df-topon 20618  df-topsp 20619  df-cn 20936  df-cnp 20937  df-tx 21270  df-hmeo 21463  df-xms 22030  df-tms 22032 This theorem is referenced by:  txmetcn  22258  cxpcn3  24384
 Copyright terms: Public domain W3C validator