Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  voliune Structured version   Visualization version   GIF version

Theorem voliune 30266
 Description: The Lebesgue measure function is countably additive. This formulation on the extended reals, allows for +∞ for the measure of any set in the sum. Cf. ovoliun 23254 and voliun 23303. (Contributed by Thierry Arnoux, 16-Oct-2017.)
Assertion
Ref Expression
voliune ((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴) → (vol‘ 𝑛 ∈ ℕ 𝐴) = Σ*𝑛 ∈ ℕ(vol‘𝐴))

Proof of Theorem voliune
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 r19.26 3060 . . . . 5 (∀𝑛 ∈ ℕ (𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ↔ (∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ ∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ))
2 eqid 2620 . . . . . 6 seq1( + , (𝑛 ∈ ℕ ↦ (vol‘𝐴))) = seq1( + , (𝑛 ∈ ℕ ↦ (vol‘𝐴)))
3 eqid 2620 . . . . . 6 (𝑛 ∈ ℕ ↦ (vol‘𝐴)) = (𝑛 ∈ ℕ ↦ (vol‘𝐴))
42, 3voliun 23303 . . . . 5 ((∀𝑛 ∈ ℕ (𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ 𝐴) → (vol‘ 𝑛 ∈ ℕ 𝐴) = sup(ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘𝐴))), ℝ*, < ))
51, 4sylanbr 490 . . . 4 (((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ ∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ 𝐴) → (vol‘ 𝑛 ∈ ℕ 𝐴) = sup(ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘𝐴))), ℝ*, < ))
65an32s 845 . . 3 (((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴) ∧ ∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ) → (vol‘ 𝑛 ∈ ℕ 𝐴) = sup(ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘𝐴))), ℝ*, < ))
7 nfra1 2938 . . . . . . 7 𝑛𝑛 ∈ ℕ 𝐴 ∈ dom vol
8 nfra1 2938 . . . . . . 7 𝑛𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ
97, 8nfan 1826 . . . . . 6 𝑛(∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ ∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ)
10 simpr 477 . . . . . . . . . 10 ((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
11 rspa 2927 . . . . . . . . . . 11 ((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ 𝑛 ∈ ℕ) → 𝐴 ∈ dom vol)
12 volf 23278 . . . . . . . . . . . 12 vol:dom vol⟶(0[,]+∞)
1312ffvelrni 6344 . . . . . . . . . . 11 (𝐴 ∈ dom vol → (vol‘𝐴) ∈ (0[,]+∞))
1411, 13syl 17 . . . . . . . . . 10 ((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ 𝑛 ∈ ℕ) → (vol‘𝐴) ∈ (0[,]+∞))
153fvmpt2 6278 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ (vol‘𝐴) ∈ (0[,]+∞)) → ((𝑛 ∈ ℕ ↦ (vol‘𝐴))‘𝑛) = (vol‘𝐴))
1610, 14, 15syl2anc 692 . . . . . . . . 9 ((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ 𝑛 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (vol‘𝐴))‘𝑛) = (vol‘𝐴))
1716adantlr 750 . . . . . . . 8 (((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ ∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ) ∧ 𝑛 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (vol‘𝐴))‘𝑛) = (vol‘𝐴))
1817ex 450 . . . . . . 7 ((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ ∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ) → (𝑛 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (vol‘𝐴))‘𝑛) = (vol‘𝐴)))
199, 18ralrimi 2954 . . . . . 6 ((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ ∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ) → ∀𝑛 ∈ ℕ ((𝑛 ∈ ℕ ↦ (vol‘𝐴))‘𝑛) = (vol‘𝐴))
209, 19esumeq2d 30073 . . . . 5 ((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ ∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ) → Σ*𝑛 ∈ ℕ((𝑛 ∈ ℕ ↦ (vol‘𝐴))‘𝑛) = Σ*𝑛 ∈ ℕ(vol‘𝐴))
21 simpr 477 . . . . . . . . 9 ((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ ∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ) → ∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ)
2221r19.21bi 2929 . . . . . . . 8 (((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ ∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ) ∧ 𝑛 ∈ ℕ) → (vol‘𝐴) ∈ ℝ)
2314adantlr 750 . . . . . . . . 9 (((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ ∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ) ∧ 𝑛 ∈ ℕ) → (vol‘𝐴) ∈ (0[,]+∞))
24 0xr 10071 . . . . . . . . . . 11 0 ∈ ℝ*
25 pnfxr 10077 . . . . . . . . . . 11 +∞ ∈ ℝ*
26 elicc1 12204 . . . . . . . . . . 11 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((vol‘𝐴) ∈ (0[,]+∞) ↔ ((vol‘𝐴) ∈ ℝ* ∧ 0 ≤ (vol‘𝐴) ∧ (vol‘𝐴) ≤ +∞)))
2724, 25, 26mp2an 707 . . . . . . . . . 10 ((vol‘𝐴) ∈ (0[,]+∞) ↔ ((vol‘𝐴) ∈ ℝ* ∧ 0 ≤ (vol‘𝐴) ∧ (vol‘𝐴) ≤ +∞))
2827simp2bi 1075 . . . . . . . . 9 ((vol‘𝐴) ∈ (0[,]+∞) → 0 ≤ (vol‘𝐴))
2923, 28syl 17 . . . . . . . 8 (((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ ∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ) ∧ 𝑛 ∈ ℕ) → 0 ≤ (vol‘𝐴))
30 ltpnf 11939 . . . . . . . . 9 ((vol‘𝐴) ∈ ℝ → (vol‘𝐴) < +∞)
3122, 30syl 17 . . . . . . . 8 (((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ ∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ) ∧ 𝑛 ∈ ℕ) → (vol‘𝐴) < +∞)
32 0re 10025 . . . . . . . . 9 0 ∈ ℝ
33 elico2 12222 . . . . . . . . 9 ((0 ∈ ℝ ∧ +∞ ∈ ℝ*) → ((vol‘𝐴) ∈ (0[,)+∞) ↔ ((vol‘𝐴) ∈ ℝ ∧ 0 ≤ (vol‘𝐴) ∧ (vol‘𝐴) < +∞)))
3432, 25, 33mp2an 707 . . . . . . . 8 ((vol‘𝐴) ∈ (0[,)+∞) ↔ ((vol‘𝐴) ∈ ℝ ∧ 0 ≤ (vol‘𝐴) ∧ (vol‘𝐴) < +∞))
3522, 29, 31, 34syl3anbrc 1244 . . . . . . 7 (((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ ∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ) ∧ 𝑛 ∈ ℕ) → (vol‘𝐴) ∈ (0[,)+∞))
369, 35, 3fmptdf 6373 . . . . . 6 ((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ ∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ) → (𝑛 ∈ ℕ ↦ (vol‘𝐴)):ℕ⟶(0[,)+∞))
37 nfmpt1 4738 . . . . . . 7 𝑛(𝑛 ∈ ℕ ↦ (vol‘𝐴))
3837esumfsupre 30107 . . . . . 6 ((𝑛 ∈ ℕ ↦ (vol‘𝐴)):ℕ⟶(0[,)+∞) → Σ*𝑛 ∈ ℕ((𝑛 ∈ ℕ ↦ (vol‘𝐴))‘𝑛) = sup(ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘𝐴))), ℝ*, < ))
3936, 38syl 17 . . . . 5 ((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ ∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ) → Σ*𝑛 ∈ ℕ((𝑛 ∈ ℕ ↦ (vol‘𝐴))‘𝑛) = sup(ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘𝐴))), ℝ*, < ))
4020, 39eqtr3d 2656 . . . 4 ((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ ∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ) → Σ*𝑛 ∈ ℕ(vol‘𝐴) = sup(ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘𝐴))), ℝ*, < ))
4140adantlr 750 . . 3 (((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴) ∧ ∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ) → Σ*𝑛 ∈ ℕ(vol‘𝐴) = sup(ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘𝐴))), ℝ*, < ))
426, 41eqtr4d 2657 . 2 (((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴) ∧ ∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ) → (vol‘ 𝑛 ∈ ℕ 𝐴) = Σ*𝑛 ∈ ℕ(vol‘𝐴))
43 simpr 477 . . . . . . . 8 (((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴) ∧ ∃𝑛 ∈ ℕ (vol‘𝐴) = +∞) → ∃𝑛 ∈ ℕ (vol‘𝐴) = +∞)
44 nfv 1841 . . . . . . . . 9 𝑘(vol‘𝐴) = +∞
45 nfcv 2762 . . . . . . . . . . 11 𝑛vol
46 nfcsb1v 3542 . . . . . . . . . . 11 𝑛𝑘 / 𝑛𝐴
4745, 46nffv 6185 . . . . . . . . . 10 𝑛(vol‘𝑘 / 𝑛𝐴)
4847nfeq1 2775 . . . . . . . . 9 𝑛(vol‘𝑘 / 𝑛𝐴) = +∞
49 csbeq1a 3535 . . . . . . . . . . 11 (𝑛 = 𝑘𝐴 = 𝑘 / 𝑛𝐴)
5049fveq2d 6182 . . . . . . . . . 10 (𝑛 = 𝑘 → (vol‘𝐴) = (vol‘𝑘 / 𝑛𝐴))
5150eqeq1d 2622 . . . . . . . . 9 (𝑛 = 𝑘 → ((vol‘𝐴) = +∞ ↔ (vol‘𝑘 / 𝑛𝐴) = +∞))
5244, 48, 51cbvrex 3163 . . . . . . . 8 (∃𝑛 ∈ ℕ (vol‘𝐴) = +∞ ↔ ∃𝑘 ∈ ℕ (vol‘𝑘 / 𝑛𝐴) = +∞)
5343, 52sylib 208 . . . . . . 7 (((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴) ∧ ∃𝑛 ∈ ℕ (vol‘𝐴) = +∞) → ∃𝑘 ∈ ℕ (vol‘𝑘 / 𝑛𝐴) = +∞)
5446nfel1 2776 . . . . . . . . . . . . 13 𝑛𝑘 / 𝑛𝐴 ∈ dom vol
5549eleq1d 2684 . . . . . . . . . . . . 13 (𝑛 = 𝑘 → (𝐴 ∈ dom vol ↔ 𝑘 / 𝑛𝐴 ∈ dom vol))
5654, 55rspc 3298 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → (∀𝑛 ∈ ℕ 𝐴 ∈ dom vol → 𝑘 / 𝑛𝐴 ∈ dom vol))
5756impcom 446 . . . . . . . . . . 11 ((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ 𝑘 ∈ ℕ) → 𝑘 / 𝑛𝐴 ∈ dom vol)
58 iunmbl 23302 . . . . . . . . . . . 12 (∀𝑛 ∈ ℕ 𝐴 ∈ dom vol → 𝑛 ∈ ℕ 𝐴 ∈ dom vol)
5958adantr 481 . . . . . . . . . . 11 ((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ 𝑘 ∈ ℕ) → 𝑛 ∈ ℕ 𝐴 ∈ dom vol)
60 nfcv 2762 . . . . . . . . . . . . 13 𝑛
61 nfcv 2762 . . . . . . . . . . . . 13 𝑛𝑘
6260, 61, 46, 49ssiun2sf 29350 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → 𝑘 / 𝑛𝐴 𝑛 ∈ ℕ 𝐴)
6362adantl 482 . . . . . . . . . . 11 ((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ 𝑘 ∈ ℕ) → 𝑘 / 𝑛𝐴 𝑛 ∈ ℕ 𝐴)
64 volss 23282 . . . . . . . . . . 11 ((𝑘 / 𝑛𝐴 ∈ dom vol ∧ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ 𝑘 / 𝑛𝐴 𝑛 ∈ ℕ 𝐴) → (vol‘𝑘 / 𝑛𝐴) ≤ (vol‘ 𝑛 ∈ ℕ 𝐴))
6557, 59, 63, 64syl3anc 1324 . . . . . . . . . 10 ((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ 𝑘 ∈ ℕ) → (vol‘𝑘 / 𝑛𝐴) ≤ (vol‘ 𝑛 ∈ ℕ 𝐴))
6665adantlr 750 . . . . . . . . 9 (((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴) ∧ 𝑘 ∈ ℕ) → (vol‘𝑘 / 𝑛𝐴) ≤ (vol‘ 𝑛 ∈ ℕ 𝐴))
6766adantlr 750 . . . . . . . 8 ((((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴) ∧ ∃𝑛 ∈ ℕ (vol‘𝐴) = +∞) ∧ 𝑘 ∈ ℕ) → (vol‘𝑘 / 𝑛𝐴) ≤ (vol‘ 𝑛 ∈ ℕ 𝐴))
6867ralrimiva 2963 . . . . . . 7 (((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴) ∧ ∃𝑛 ∈ ℕ (vol‘𝐴) = +∞) → ∀𝑘 ∈ ℕ (vol‘𝑘 / 𝑛𝐴) ≤ (vol‘ 𝑛 ∈ ℕ 𝐴))
69 r19.29r 3069 . . . . . . 7 ((∃𝑘 ∈ ℕ (vol‘𝑘 / 𝑛𝐴) = +∞ ∧ ∀𝑘 ∈ ℕ (vol‘𝑘 / 𝑛𝐴) ≤ (vol‘ 𝑛 ∈ ℕ 𝐴)) → ∃𝑘 ∈ ℕ ((vol‘𝑘 / 𝑛𝐴) = +∞ ∧ (vol‘𝑘 / 𝑛𝐴) ≤ (vol‘ 𝑛 ∈ ℕ 𝐴)))
7053, 68, 69syl2anc 692 . . . . . 6 (((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴) ∧ ∃𝑛 ∈ ℕ (vol‘𝐴) = +∞) → ∃𝑘 ∈ ℕ ((vol‘𝑘 / 𝑛𝐴) = +∞ ∧ (vol‘𝑘 / 𝑛𝐴) ≤ (vol‘ 𝑛 ∈ ℕ 𝐴)))
71 breq1 4647 . . . . . . . 8 ((vol‘𝑘 / 𝑛𝐴) = +∞ → ((vol‘𝑘 / 𝑛𝐴) ≤ (vol‘ 𝑛 ∈ ℕ 𝐴) ↔ +∞ ≤ (vol‘ 𝑛 ∈ ℕ 𝐴)))
7271biimpa 501 . . . . . . 7 (((vol‘𝑘 / 𝑛𝐴) = +∞ ∧ (vol‘𝑘 / 𝑛𝐴) ≤ (vol‘ 𝑛 ∈ ℕ 𝐴)) → +∞ ≤ (vol‘ 𝑛 ∈ ℕ 𝐴))
7372reximi 3008 . . . . . 6 (∃𝑘 ∈ ℕ ((vol‘𝑘 / 𝑛𝐴) = +∞ ∧ (vol‘𝑘 / 𝑛𝐴) ≤ (vol‘ 𝑛 ∈ ℕ 𝐴)) → ∃𝑘 ∈ ℕ +∞ ≤ (vol‘ 𝑛 ∈ ℕ 𝐴))
7470, 73syl 17 . . . . 5 (((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴) ∧ ∃𝑛 ∈ ℕ (vol‘𝐴) = +∞) → ∃𝑘 ∈ ℕ +∞ ≤ (vol‘ 𝑛 ∈ ℕ 𝐴))
75 1nn 11016 . . . . . 6 1 ∈ ℕ
76 ne0i 3913 . . . . . 6 (1 ∈ ℕ → ℕ ≠ ∅)
77 r19.9rzv 4056 . . . . . 6 (ℕ ≠ ∅ → (+∞ ≤ (vol‘ 𝑛 ∈ ℕ 𝐴) ↔ ∃𝑘 ∈ ℕ +∞ ≤ (vol‘ 𝑛 ∈ ℕ 𝐴)))
7875, 76, 77mp2b 10 . . . . 5 (+∞ ≤ (vol‘ 𝑛 ∈ ℕ 𝐴) ↔ ∃𝑘 ∈ ℕ +∞ ≤ (vol‘ 𝑛 ∈ ℕ 𝐴))
7974, 78sylibr 224 . . . 4 (((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴) ∧ ∃𝑛 ∈ ℕ (vol‘𝐴) = +∞) → +∞ ≤ (vol‘ 𝑛 ∈ ℕ 𝐴))
80 iccssxr 12241 . . . . . . . 8 (0[,]+∞) ⊆ ℝ*
8112ffvelrni 6344 . . . . . . . 8 ( 𝑛 ∈ ℕ 𝐴 ∈ dom vol → (vol‘ 𝑛 ∈ ℕ 𝐴) ∈ (0[,]+∞))
8280, 81sseldi 3593 . . . . . . 7 ( 𝑛 ∈ ℕ 𝐴 ∈ dom vol → (vol‘ 𝑛 ∈ ℕ 𝐴) ∈ ℝ*)
8358, 82syl 17 . . . . . 6 (∀𝑛 ∈ ℕ 𝐴 ∈ dom vol → (vol‘ 𝑛 ∈ ℕ 𝐴) ∈ ℝ*)
8483ad2antrr 761 . . . . 5 (((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴) ∧ ∃𝑛 ∈ ℕ (vol‘𝐴) = +∞) → (vol‘ 𝑛 ∈ ℕ 𝐴) ∈ ℝ*)
85 xgepnf 11981 . . . . 5 ((vol‘ 𝑛 ∈ ℕ 𝐴) ∈ ℝ* → (+∞ ≤ (vol‘ 𝑛 ∈ ℕ 𝐴) ↔ (vol‘ 𝑛 ∈ ℕ 𝐴) = +∞))
8684, 85syl 17 . . . 4 (((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴) ∧ ∃𝑛 ∈ ℕ (vol‘𝐴) = +∞) → (+∞ ≤ (vol‘ 𝑛 ∈ ℕ 𝐴) ↔ (vol‘ 𝑛 ∈ ℕ 𝐴) = +∞))
8779, 86mpbid 222 . . 3 (((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴) ∧ ∃𝑛 ∈ ℕ (vol‘𝐴) = +∞) → (vol‘ 𝑛 ∈ ℕ 𝐴) = +∞)
88 nfdisj1 4624 . . . . . 6 𝑛Disj 𝑛 ∈ ℕ 𝐴
897, 88nfan 1826 . . . . 5 𝑛(∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴)
90 nfre1 3002 . . . . 5 𝑛𝑛 ∈ ℕ (vol‘𝐴) = +∞
9189, 90nfan 1826 . . . 4 𝑛((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴) ∧ ∃𝑛 ∈ ℕ (vol‘𝐴) = +∞)
92 nnex 11011 . . . . 5 ℕ ∈ V
9392a1i 11 . . . 4 (((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴) ∧ ∃𝑛 ∈ ℕ (vol‘𝐴) = +∞) → ℕ ∈ V)
94143ad2antr3 1226 . . . . 5 ((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ (Disj 𝑛 ∈ ℕ 𝐴 ∧ ∃𝑛 ∈ ℕ (vol‘𝐴) = +∞ ∧ 𝑛 ∈ ℕ)) → (vol‘𝐴) ∈ (0[,]+∞))
95943anassrs 1288 . . . 4 ((((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴) ∧ ∃𝑛 ∈ ℕ (vol‘𝐴) = +∞) ∧ 𝑛 ∈ ℕ) → (vol‘𝐴) ∈ (0[,]+∞))
9691, 93, 95, 43esumpinfval 30109 . . 3 (((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴) ∧ ∃𝑛 ∈ ℕ (vol‘𝐴) = +∞) → Σ*𝑛 ∈ ℕ(vol‘𝐴) = +∞)
9787, 96eqtr4d 2657 . 2 (((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴) ∧ ∃𝑛 ∈ ℕ (vol‘𝐴) = +∞) → (vol‘ 𝑛 ∈ ℕ 𝐴) = Σ*𝑛 ∈ ℕ(vol‘𝐴))
98 exmid 431 . . . . 5 (∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ ∨ ¬ ∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ)
99 rexnal 2992 . . . . . 6 (∃𝑛 ∈ ℕ ¬ (vol‘𝐴) ∈ ℝ ↔ ¬ ∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ)
10099orbi2i 541 . . . . 5 ((∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ ∨ ∃𝑛 ∈ ℕ ¬ (vol‘𝐴) ∈ ℝ) ↔ (∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ ∨ ¬ ∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ))
10198, 100mpbir 221 . . . 4 (∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ ∨ ∃𝑛 ∈ ℕ ¬ (vol‘𝐴) ∈ ℝ)
102 r19.29 3068 . . . . . . 7 ((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ ∃𝑛 ∈ ℕ ¬ (vol‘𝐴) ∈ ℝ) → ∃𝑛 ∈ ℕ (𝐴 ∈ dom vol ∧ ¬ (vol‘𝐴) ∈ ℝ))
103 xrge0nre 12262 . . . . . . . . 9 (((vol‘𝐴) ∈ (0[,]+∞) ∧ ¬ (vol‘𝐴) ∈ ℝ) → (vol‘𝐴) = +∞)
10413, 103sylan 488 . . . . . . . 8 ((𝐴 ∈ dom vol ∧ ¬ (vol‘𝐴) ∈ ℝ) → (vol‘𝐴) = +∞)
105104reximi 3008 . . . . . . 7 (∃𝑛 ∈ ℕ (𝐴 ∈ dom vol ∧ ¬ (vol‘𝐴) ∈ ℝ) → ∃𝑛 ∈ ℕ (vol‘𝐴) = +∞)
106102, 105syl 17 . . . . . 6 ((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ ∃𝑛 ∈ ℕ ¬ (vol‘𝐴) ∈ ℝ) → ∃𝑛 ∈ ℕ (vol‘𝐴) = +∞)
107106ex 450 . . . . 5 (∀𝑛 ∈ ℕ 𝐴 ∈ dom vol → (∃𝑛 ∈ ℕ ¬ (vol‘𝐴) ∈ ℝ → ∃𝑛 ∈ ℕ (vol‘𝐴) = +∞))
108107orim2d 884 . . . 4 (∀𝑛 ∈ ℕ 𝐴 ∈ dom vol → ((∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ ∨ ∃𝑛 ∈ ℕ ¬ (vol‘𝐴) ∈ ℝ) → (∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ ∨ ∃𝑛 ∈ ℕ (vol‘𝐴) = +∞)))
109101, 108mpi 20 . . 3 (∀𝑛 ∈ ℕ 𝐴 ∈ dom vol → (∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ ∨ ∃𝑛 ∈ ℕ (vol‘𝐴) = +∞))
110109adantr 481 . 2 ((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴) → (∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ ∨ ∃𝑛 ∈ ℕ (vol‘𝐴) = +∞))
11142, 97, 110mpjaodan 826 1 ((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴) → (vol‘ 𝑛 ∈ ℕ 𝐴) = Σ*𝑛 ∈ ℕ(vol‘𝐴))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∨ wo 383   ∧ wa 384   ∧ w3a 1036   = wceq 1481   ∈ wcel 1988   ≠ wne 2791  ∀wral 2909  ∃wrex 2910  Vcvv 3195  ⦋csb 3526   ⊆ wss 3567  ∅c0 3907  ∪ ciun 4511  Disj wdisj 4611   class class class wbr 4644   ↦ cmpt 4720  dom cdm 5104  ran crn 5105  ⟶wf 5872  ‘cfv 5876  (class class class)co 6635  supcsup 8331  ℝcr 9920  0cc0 9921  1c1 9922   + caddc 9924  +∞cpnf 10056  ℝ*cxr 10058   < clt 10059   ≤ cle 10060  ℕcn 11005  [,)cico 12162  [,]cicc 12163  seqcseq 12784  volcvol 23213  Σ*cesum 30063 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-inf2 8523  ax-cc 9242  ax-cnex 9977  ax-resscn 9978  ax-1cn 9979  ax-icn 9980  ax-addcl 9981  ax-addrcl 9982  ax-mulcl 9983  ax-mulrcl 9984  ax-mulcom 9985  ax-addass 9986  ax-mulass 9987  ax-distr 9988  ax-i2m1 9989  ax-1ne0 9990  ax-1rid 9991  ax-rnegex 9992  ax-rrecex 9993  ax-cnre 9994  ax-pre-lttri 9995  ax-pre-lttrn 9996  ax-pre-ltadd 9997  ax-pre-mulgt0 9998  ax-pre-sup 9999  ax-addf 10000  ax-mulf 10001 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-fal 1487  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-reu 2916  df-rmo 2917  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-int 4467  df-iun 4513  df-iin 4514  df-disj 4612  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-se 5064  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-isom 5885  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-of 6882  df-om 7051  df-1st 7153  df-2nd 7154  df-supp 7281  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-1o 7545  df-2o 7546  df-oadd 7549  df-er 7727  df-map 7844  df-pm 7845  df-ixp 7894  df-en 7941  df-dom 7942  df-sdom 7943  df-fin 7944  df-fsupp 8261  df-fi 8302  df-sup 8333  df-inf 8334  df-oi 8400  df-card 8750  df-cda 8975  df-pnf 10061  df-mnf 10062  df-xr 10063  df-ltxr 10064  df-le 10065  df-sub 10253  df-neg 10254  df-div 10670  df-nn 11006  df-2 11064  df-3 11065  df-4 11066  df-5 11067  df-6 11068  df-7 11069  df-8 11070  df-9 11071  df-n0 11278  df-xnn0 11349  df-z 11363  df-dec 11479  df-uz 11673  df-q 11774  df-rp 11818  df-xneg 11931  df-xadd 11932  df-xmul 11933  df-ioo 12164  df-ioc 12165  df-ico 12166  df-icc 12167  df-fz 12312  df-fzo 12450  df-fl 12576  df-mod 12652  df-seq 12785  df-exp 12844  df-fac 13044  df-bc 13073  df-hash 13101  df-shft 13788  df-cj 13820  df-re 13821  df-im 13822  df-sqrt 13956  df-abs 13957  df-limsup 14183  df-clim 14200  df-rlim 14201  df-sum 14398  df-ef 14779  df-sin 14781  df-cos 14782  df-pi 14784  df-struct 15840  df-ndx 15841  df-slot 15842  df-base 15844  df-sets 15845  df-ress 15846  df-plusg 15935  df-mulr 15936  df-starv 15937  df-sca 15938  df-vsca 15939  df-ip 15940  df-tset 15941  df-ple 15942  df-ds 15945  df-unif 15946  df-hom 15947  df-cco 15948  df-rest 16064  df-topn 16065  df-0g 16083  df-gsum 16084  df-topgen 16085  df-pt 16086  df-prds 16089  df-ordt 16142  df-xrs 16143  df-qtop 16148  df-imas 16149  df-xps 16151  df-mre 16227  df-mrc 16228  df-acs 16230  df-ps 17181  df-tsr 17182  df-plusf 17222  df-mgm 17223  df-sgrp 17265  df-mnd 17276  df-mhm 17316  df-submnd 17317  df-grp 17406  df-minusg 17407  df-sbg 17408  df-mulg 17522  df-subg 17572  df-cntz 17731  df-cmn 18176  df-abl 18177  df-mgp 18471  df-ur 18483  df-ring 18530  df-cring 18531  df-subrg 18759  df-abv 18798  df-lmod 18846  df-scaf 18847  df-sra 19153  df-rgmod 19154  df-psmet 19719  df-xmet 19720  df-met 19721  df-bl 19722  df-mopn 19723  df-fbas 19724  df-fg 19725  df-cnfld 19728  df-top 20680  df-topon 20697  df-topsp 20718  df-bases 20731  df-cld 20804  df-ntr 20805  df-cls 20806  df-nei 20883  df-lp 20921  df-perf 20922  df-cn 21012  df-cnp 21013  df-haus 21100  df-tx 21346  df-hmeo 21539  df-fil 21631  df-fm 21723  df-flim 21724  df-flf 21725  df-tmd 21857  df-tgp 21858  df-tsms 21911  df-trg 21944  df-xms 22106  df-ms 22107  df-tms 22108  df-nm 22368  df-ngp 22369  df-nrg 22371  df-nlm 22372  df-ii 22661  df-cncf 22662  df-ovol 23214  df-vol 23215  df-limc 23611  df-dv 23612  df-log 24284  df-esum 30064 This theorem is referenced by:  volmeas  30268
 Copyright terms: Public domain W3C validator