MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  voliunlem3 Structured version   Visualization version   GIF version

Theorem voliunlem3 23239
Description: Lemma for voliun 23241. (Contributed by Mario Carneiro, 20-Mar-2014.)
Hypotheses
Ref Expression
voliunlem.3 (𝜑𝐹:ℕ⟶dom vol)
voliunlem.5 (𝜑Disj 𝑖 ∈ ℕ (𝐹𝑖))
voliunlem.6 𝐻 = (𝑛 ∈ ℕ ↦ (vol*‘(𝑥 ∩ (𝐹𝑛))))
voliunlem3.1 𝑆 = seq1( + , 𝐺)
voliunlem3.2 𝐺 = (𝑛 ∈ ℕ ↦ (vol‘(𝐹𝑛)))
voliunlem3.4 (𝜑 → ∀𝑖 ∈ ℕ (vol‘(𝐹𝑖)) ∈ ℝ)
Assertion
Ref Expression
voliunlem3 (𝜑 → (vol‘ ran 𝐹) = sup(ran 𝑆, ℝ*, < ))
Distinct variable groups:   𝑖,𝑛,𝑥,𝐹   𝑥,𝑆   𝜑,𝑛,𝑥
Allowed substitution hints:   𝜑(𝑖)   𝑆(𝑖,𝑛)   𝐺(𝑥,𝑖,𝑛)   𝐻(𝑥,𝑖,𝑛)

Proof of Theorem voliunlem3
Dummy variables 𝑘 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 voliunlem.3 . . . 4 (𝜑𝐹:ℕ⟶dom vol)
2 voliunlem.5 . . . 4 (𝜑Disj 𝑖 ∈ ℕ (𝐹𝑖))
3 voliunlem.6 . . . 4 𝐻 = (𝑛 ∈ ℕ ↦ (vol*‘(𝑥 ∩ (𝐹𝑛))))
41, 2, 3voliunlem2 23238 . . 3 (𝜑 ran 𝐹 ∈ dom vol)
5 mblvol 23217 . . 3 ( ran 𝐹 ∈ dom vol → (vol‘ ran 𝐹) = (vol*‘ ran 𝐹))
64, 5syl 17 . 2 (𝜑 → (vol‘ ran 𝐹) = (vol*‘ ran 𝐹))
7 eqid 2621 . . . . 5 seq1( + , (𝑛 ∈ ℕ ↦ (vol*‘(𝐹𝑛)))) = seq1( + , (𝑛 ∈ ℕ ↦ (vol*‘(𝐹𝑛))))
8 eqid 2621 . . . . 5 (𝑛 ∈ ℕ ↦ (vol*‘(𝐹𝑛))) = (𝑛 ∈ ℕ ↦ (vol*‘(𝐹𝑛)))
91ffvelrnda 6320 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ∈ dom vol)
10 mblss 23218 . . . . . 6 ((𝐹𝑛) ∈ dom vol → (𝐹𝑛) ⊆ ℝ)
119, 10syl 17 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ⊆ ℝ)
12 mblvol 23217 . . . . . . 7 ((𝐹𝑛) ∈ dom vol → (vol‘(𝐹𝑛)) = (vol*‘(𝐹𝑛)))
139, 12syl 17 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (vol‘(𝐹𝑛)) = (vol*‘(𝐹𝑛)))
14 voliunlem3.4 . . . . . . 7 (𝜑 → ∀𝑖 ∈ ℕ (vol‘(𝐹𝑖)) ∈ ℝ)
15 fveq2 6153 . . . . . . . . . 10 (𝑖 = 𝑛 → (𝐹𝑖) = (𝐹𝑛))
1615fveq2d 6157 . . . . . . . . 9 (𝑖 = 𝑛 → (vol‘(𝐹𝑖)) = (vol‘(𝐹𝑛)))
1716eleq1d 2683 . . . . . . . 8 (𝑖 = 𝑛 → ((vol‘(𝐹𝑖)) ∈ ℝ ↔ (vol‘(𝐹𝑛)) ∈ ℝ))
1817rspccva 3297 . . . . . . 7 ((∀𝑖 ∈ ℕ (vol‘(𝐹𝑖)) ∈ ℝ ∧ 𝑛 ∈ ℕ) → (vol‘(𝐹𝑛)) ∈ ℝ)
1914, 18sylan 488 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (vol‘(𝐹𝑛)) ∈ ℝ)
2013, 19eqeltrrd 2699 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (vol*‘(𝐹𝑛)) ∈ ℝ)
217, 8, 11, 20ovoliun 23192 . . . 4 (𝜑 → (vol*‘ 𝑛 ∈ ℕ (𝐹𝑛)) ≤ sup(ran seq1( + , (𝑛 ∈ ℕ ↦ (vol*‘(𝐹𝑛)))), ℝ*, < ))
22 ffn 6007 . . . . . . 7 (𝐹:ℕ⟶dom vol → 𝐹 Fn ℕ)
231, 22syl 17 . . . . . 6 (𝜑𝐹 Fn ℕ)
24 fniunfv 6465 . . . . . 6 (𝐹 Fn ℕ → 𝑛 ∈ ℕ (𝐹𝑛) = ran 𝐹)
2523, 24syl 17 . . . . 5 (𝜑 𝑛 ∈ ℕ (𝐹𝑛) = ran 𝐹)
2625fveq2d 6157 . . . 4 (𝜑 → (vol*‘ 𝑛 ∈ ℕ (𝐹𝑛)) = (vol*‘ ran 𝐹))
27 voliunlem3.1 . . . . . . 7 𝑆 = seq1( + , 𝐺)
28 voliunlem3.2 . . . . . . . . 9 𝐺 = (𝑛 ∈ ℕ ↦ (vol‘(𝐹𝑛)))
2913mpteq2dva 4709 . . . . . . . . 9 (𝜑 → (𝑛 ∈ ℕ ↦ (vol‘(𝐹𝑛))) = (𝑛 ∈ ℕ ↦ (vol*‘(𝐹𝑛))))
3028, 29syl5eq 2667 . . . . . . . 8 (𝜑𝐺 = (𝑛 ∈ ℕ ↦ (vol*‘(𝐹𝑛))))
3130seqeq3d 12756 . . . . . . 7 (𝜑 → seq1( + , 𝐺) = seq1( + , (𝑛 ∈ ℕ ↦ (vol*‘(𝐹𝑛)))))
3227, 31syl5req 2668 . . . . . 6 (𝜑 → seq1( + , (𝑛 ∈ ℕ ↦ (vol*‘(𝐹𝑛)))) = 𝑆)
3332rneqd 5318 . . . . 5 (𝜑 → ran seq1( + , (𝑛 ∈ ℕ ↦ (vol*‘(𝐹𝑛)))) = ran 𝑆)
3433supeq1d 8303 . . . 4 (𝜑 → sup(ran seq1( + , (𝑛 ∈ ℕ ↦ (vol*‘(𝐹𝑛)))), ℝ*, < ) = sup(ran 𝑆, ℝ*, < ))
3521, 26, 343brtr3d 4649 . . 3 (𝜑 → (vol*‘ ran 𝐹) ≤ sup(ran 𝑆, ℝ*, < ))
36 frn 6015 . . . . . . . . . . . . 13 (𝐹:ℕ⟶dom vol → ran 𝐹 ⊆ dom vol)
371, 36syl 17 . . . . . . . . . . . 12 (𝜑 → ran 𝐹 ⊆ dom vol)
38 mblss 23218 . . . . . . . . . . . . . 14 (𝑥 ∈ dom vol → 𝑥 ⊆ ℝ)
39 reex 9978 . . . . . . . . . . . . . . 15 ℝ ∈ V
4039elpw2 4793 . . . . . . . . . . . . . 14 (𝑥 ∈ 𝒫 ℝ ↔ 𝑥 ⊆ ℝ)
4138, 40sylibr 224 . . . . . . . . . . . . 13 (𝑥 ∈ dom vol → 𝑥 ∈ 𝒫 ℝ)
4241ssriv 3591 . . . . . . . . . . . 12 dom vol ⊆ 𝒫 ℝ
4337, 42syl6ss 3599 . . . . . . . . . . 11 (𝜑 → ran 𝐹 ⊆ 𝒫 ℝ)
44 sspwuni 4582 . . . . . . . . . . 11 (ran 𝐹 ⊆ 𝒫 ℝ ↔ ran 𝐹 ⊆ ℝ)
4543, 44sylib 208 . . . . . . . . . 10 (𝜑 ran 𝐹 ⊆ ℝ)
46 ovolcl 23165 . . . . . . . . . 10 ( ran 𝐹 ⊆ ℝ → (vol*‘ ran 𝐹) ∈ ℝ*)
4745, 46syl 17 . . . . . . . . 9 (𝜑 → (vol*‘ ran 𝐹) ∈ ℝ*)
48 ovolge0 23168 . . . . . . . . . 10 ( ran 𝐹 ⊆ ℝ → 0 ≤ (vol*‘ ran 𝐹))
4945, 48syl 17 . . . . . . . . 9 (𝜑 → 0 ≤ (vol*‘ ran 𝐹))
50 mnflt0 11910 . . . . . . . . . 10 -∞ < 0
51 mnfxr 10047 . . . . . . . . . . 11 -∞ ∈ ℝ*
52 0xr 10037 . . . . . . . . . . 11 0 ∈ ℝ*
53 xrltletr 11939 . . . . . . . . . . 11 ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ* ∧ (vol*‘ ran 𝐹) ∈ ℝ*) → ((-∞ < 0 ∧ 0 ≤ (vol*‘ ran 𝐹)) → -∞ < (vol*‘ ran 𝐹)))
5451, 52, 53mp3an12 1411 . . . . . . . . . 10 ((vol*‘ ran 𝐹) ∈ ℝ* → ((-∞ < 0 ∧ 0 ≤ (vol*‘ ran 𝐹)) → -∞ < (vol*‘ ran 𝐹)))
5550, 54mpani 711 . . . . . . . . 9 ((vol*‘ ran 𝐹) ∈ ℝ* → (0 ≤ (vol*‘ ran 𝐹) → -∞ < (vol*‘ ran 𝐹)))
5647, 49, 55sylc 65 . . . . . . . 8 (𝜑 → -∞ < (vol*‘ ran 𝐹))
57 xrrebnd 11949 . . . . . . . . . 10 ((vol*‘ ran 𝐹) ∈ ℝ* → ((vol*‘ ran 𝐹) ∈ ℝ ↔ (-∞ < (vol*‘ ran 𝐹) ∧ (vol*‘ ran 𝐹) < +∞)))
5847, 57syl 17 . . . . . . . . 9 (𝜑 → ((vol*‘ ran 𝐹) ∈ ℝ ↔ (-∞ < (vol*‘ ran 𝐹) ∧ (vol*‘ ran 𝐹) < +∞)))
5939elpw2 4793 . . . . . . . . . . . 12 ( ran 𝐹 ∈ 𝒫 ℝ ↔ ran 𝐹 ⊆ ℝ)
6045, 59sylibr 224 . . . . . . . . . . 11 (𝜑 ran 𝐹 ∈ 𝒫 ℝ)
61 simpl 473 . . . . . . . . . . . . . . 15 ((𝑥 = ran 𝐹𝜑) → 𝑥 = ran 𝐹)
6261sseq1d 3616 . . . . . . . . . . . . . 14 ((𝑥 = ran 𝐹𝜑) → (𝑥 ⊆ ℝ ↔ ran 𝐹 ⊆ ℝ))
6361fveq2d 6157 . . . . . . . . . . . . . . . 16 ((𝑥 = ran 𝐹𝜑) → (vol*‘𝑥) = (vol*‘ ran 𝐹))
6463eleq1d 2683 . . . . . . . . . . . . . . 15 ((𝑥 = ran 𝐹𝜑) → ((vol*‘𝑥) ∈ ℝ ↔ (vol*‘ ran 𝐹) ∈ ℝ))
65 simpll 789 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑥 = ran 𝐹𝜑) ∧ 𝑛 ∈ ℕ) → 𝑥 = ran 𝐹)
6665ineq1d 3796 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑥 = ran 𝐹𝜑) ∧ 𝑛 ∈ ℕ) → (𝑥 ∩ (𝐹𝑛)) = ( ran 𝐹 ∩ (𝐹𝑛)))
67 fnfvelrn 6317 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝐹 Fn ℕ ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) ∈ ran 𝐹)
6823, 67sylan 488 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ∈ ran 𝐹)
69 elssuni 4438 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝐹𝑛) ∈ ran 𝐹 → (𝐹𝑛) ⊆ ran 𝐹)
7068, 69syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ⊆ ran 𝐹)
7170adantll 749 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑥 = ran 𝐹𝜑) ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) ⊆ ran 𝐹)
72 sseqin2 3800 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝐹𝑛) ⊆ ran 𝐹 ↔ ( ran 𝐹 ∩ (𝐹𝑛)) = (𝐹𝑛))
7371, 72sylib 208 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑥 = ran 𝐹𝜑) ∧ 𝑛 ∈ ℕ) → ( ran 𝐹 ∩ (𝐹𝑛)) = (𝐹𝑛))
7466, 73eqtrd 2655 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑥 = ran 𝐹𝜑) ∧ 𝑛 ∈ ℕ) → (𝑥 ∩ (𝐹𝑛)) = (𝐹𝑛))
7574fveq2d 6157 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑥 = ran 𝐹𝜑) ∧ 𝑛 ∈ ℕ) → (vol*‘(𝑥 ∩ (𝐹𝑛))) = (vol*‘(𝐹𝑛)))
7613adantll 749 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑥 = ran 𝐹𝜑) ∧ 𝑛 ∈ ℕ) → (vol‘(𝐹𝑛)) = (vol*‘(𝐹𝑛)))
7775, 76eqtr4d 2658 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑥 = ran 𝐹𝜑) ∧ 𝑛 ∈ ℕ) → (vol*‘(𝑥 ∩ (𝐹𝑛))) = (vol‘(𝐹𝑛)))
7877mpteq2dva 4709 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑥 = ran 𝐹𝜑) → (𝑛 ∈ ℕ ↦ (vol*‘(𝑥 ∩ (𝐹𝑛)))) = (𝑛 ∈ ℕ ↦ (vol‘(𝐹𝑛))))
7978adantrr 752 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥 = ran 𝐹 ∧ (𝜑𝑘 ∈ ℕ)) → (𝑛 ∈ ℕ ↦ (vol*‘(𝑥 ∩ (𝐹𝑛)))) = (𝑛 ∈ ℕ ↦ (vol‘(𝐹𝑛))))
8079, 3, 283eqtr4g 2680 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 = ran 𝐹 ∧ (𝜑𝑘 ∈ ℕ)) → 𝐻 = 𝐺)
8180seqeq3d 12756 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 = ran 𝐹 ∧ (𝜑𝑘 ∈ ℕ)) → seq1( + , 𝐻) = seq1( + , 𝐺))
8281, 27syl6eqr 2673 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 = ran 𝐹 ∧ (𝜑𝑘 ∈ ℕ)) → seq1( + , 𝐻) = 𝑆)
8382fveq1d 6155 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 = ran 𝐹 ∧ (𝜑𝑘 ∈ ℕ)) → (seq1( + , 𝐻)‘𝑘) = (𝑆𝑘))
84 difeq1 3704 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = ran 𝐹 → (𝑥 ran 𝐹) = ( ran 𝐹 ran 𝐹))
85 difid 3927 . . . . . . . . . . . . . . . . . . . . . . . 24 ( ran 𝐹 ran 𝐹) = ∅
8684, 85syl6eq 2671 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = ran 𝐹 → (𝑥 ran 𝐹) = ∅)
8786fveq2d 6157 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = ran 𝐹 → (vol*‘(𝑥 ran 𝐹)) = (vol*‘∅))
88 ovol0 23180 . . . . . . . . . . . . . . . . . . . . . 22 (vol*‘∅) = 0
8987, 88syl6eq 2671 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = ran 𝐹 → (vol*‘(𝑥 ran 𝐹)) = 0)
9089adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 = ran 𝐹 ∧ (𝜑𝑘 ∈ ℕ)) → (vol*‘(𝑥 ran 𝐹)) = 0)
9183, 90oveq12d 6628 . . . . . . . . . . . . . . . . . . 19 ((𝑥 = ran 𝐹 ∧ (𝜑𝑘 ∈ ℕ)) → ((seq1( + , 𝐻)‘𝑘) + (vol*‘(𝑥 ran 𝐹))) = ((𝑆𝑘) + 0))
92 nnuz 11674 . . . . . . . . . . . . . . . . . . . . . . . . 25 ℕ = (ℤ‘1)
93 1zzd 11359 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → 1 ∈ ℤ)
94 fveq2 6153 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑛 = 𝑘 → (𝐹𝑛) = (𝐹𝑘))
9594fveq2d 6157 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑛 = 𝑘 → (vol‘(𝐹𝑛)) = (vol‘(𝐹𝑘)))
96 fvex 6163 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (vol‘(𝐹𝑘)) ∈ V
9795, 28, 96fvmpt 6244 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑘 ∈ ℕ → (𝐺𝑘) = (vol‘(𝐹𝑘)))
9897adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑘 ∈ ℕ) → (𝐺𝑘) = (vol‘(𝐹𝑘)))
99 fveq2 6153 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑖 = 𝑘 → (𝐹𝑖) = (𝐹𝑘))
10099fveq2d 6157 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑖 = 𝑘 → (vol‘(𝐹𝑖)) = (vol‘(𝐹𝑘)))
101100eleq1d 2683 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑖 = 𝑘 → ((vol‘(𝐹𝑖)) ∈ ℝ ↔ (vol‘(𝐹𝑘)) ∈ ℝ))
102101rspccva 3297 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((∀𝑖 ∈ ℕ (vol‘(𝐹𝑖)) ∈ ℝ ∧ 𝑘 ∈ ℕ) → (vol‘(𝐹𝑘)) ∈ ℝ)
10314, 102sylan 488 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑘 ∈ ℕ) → (vol‘(𝐹𝑘)) ∈ ℝ)
10498, 103eqeltrd 2698 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑘 ∈ ℕ) → (𝐺𝑘) ∈ ℝ)
10592, 93, 104serfre 12777 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → seq1( + , 𝐺):ℕ⟶ℝ)
10627feq1i 5998 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑆:ℕ⟶ℝ ↔ seq1( + , 𝐺):ℕ⟶ℝ)
107105, 106sylibr 224 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑆:ℕ⟶ℝ)
108107ffvelrnda 6320 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑘 ∈ ℕ) → (𝑆𝑘) ∈ ℝ)
109108adantl 482 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 = ran 𝐹 ∧ (𝜑𝑘 ∈ ℕ)) → (𝑆𝑘) ∈ ℝ)
110109recnd 10019 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 = ran 𝐹 ∧ (𝜑𝑘 ∈ ℕ)) → (𝑆𝑘) ∈ ℂ)
111110addid1d 10187 . . . . . . . . . . . . . . . . . . 19 ((𝑥 = ran 𝐹 ∧ (𝜑𝑘 ∈ ℕ)) → ((𝑆𝑘) + 0) = (𝑆𝑘))
11291, 111eqtrd 2655 . . . . . . . . . . . . . . . . . 18 ((𝑥 = ran 𝐹 ∧ (𝜑𝑘 ∈ ℕ)) → ((seq1( + , 𝐻)‘𝑘) + (vol*‘(𝑥 ran 𝐹))) = (𝑆𝑘))
113 fveq2 6153 . . . . . . . . . . . . . . . . . . 19 (𝑥 = ran 𝐹 → (vol*‘𝑥) = (vol*‘ ran 𝐹))
114113adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝑥 = ran 𝐹 ∧ (𝜑𝑘 ∈ ℕ)) → (vol*‘𝑥) = (vol*‘ ran 𝐹))
115112, 114breq12d 4631 . . . . . . . . . . . . . . . . 17 ((𝑥 = ran 𝐹 ∧ (𝜑𝑘 ∈ ℕ)) → (((seq1( + , 𝐻)‘𝑘) + (vol*‘(𝑥 ran 𝐹))) ≤ (vol*‘𝑥) ↔ (𝑆𝑘) ≤ (vol*‘ ran 𝐹)))
116115expr 642 . . . . . . . . . . . . . . . 16 ((𝑥 = ran 𝐹𝜑) → (𝑘 ∈ ℕ → (((seq1( + , 𝐻)‘𝑘) + (vol*‘(𝑥 ran 𝐹))) ≤ (vol*‘𝑥) ↔ (𝑆𝑘) ≤ (vol*‘ ran 𝐹))))
117116pm5.74d 262 . . . . . . . . . . . . . . 15 ((𝑥 = ran 𝐹𝜑) → ((𝑘 ∈ ℕ → ((seq1( + , 𝐻)‘𝑘) + (vol*‘(𝑥 ran 𝐹))) ≤ (vol*‘𝑥)) ↔ (𝑘 ∈ ℕ → (𝑆𝑘) ≤ (vol*‘ ran 𝐹))))
11864, 117imbi12d 334 . . . . . . . . . . . . . 14 ((𝑥 = ran 𝐹𝜑) → (((vol*‘𝑥) ∈ ℝ → (𝑘 ∈ ℕ → ((seq1( + , 𝐻)‘𝑘) + (vol*‘(𝑥 ran 𝐹))) ≤ (vol*‘𝑥))) ↔ ((vol*‘ ran 𝐹) ∈ ℝ → (𝑘 ∈ ℕ → (𝑆𝑘) ≤ (vol*‘ ran 𝐹)))))
11962, 118imbi12d 334 . . . . . . . . . . . . 13 ((𝑥 = ran 𝐹𝜑) → ((𝑥 ⊆ ℝ → ((vol*‘𝑥) ∈ ℝ → (𝑘 ∈ ℕ → ((seq1( + , 𝐻)‘𝑘) + (vol*‘(𝑥 ran 𝐹))) ≤ (vol*‘𝑥)))) ↔ ( ran 𝐹 ⊆ ℝ → ((vol*‘ ran 𝐹) ∈ ℝ → (𝑘 ∈ ℕ → (𝑆𝑘) ≤ (vol*‘ ran 𝐹))))))
120119pm5.74da 722 . . . . . . . . . . . 12 (𝑥 = ran 𝐹 → ((𝜑 → (𝑥 ⊆ ℝ → ((vol*‘𝑥) ∈ ℝ → (𝑘 ∈ ℕ → ((seq1( + , 𝐻)‘𝑘) + (vol*‘(𝑥 ran 𝐹))) ≤ (vol*‘𝑥))))) ↔ (𝜑 → ( ran 𝐹 ⊆ ℝ → ((vol*‘ ran 𝐹) ∈ ℝ → (𝑘 ∈ ℕ → (𝑆𝑘) ≤ (vol*‘ ran 𝐹)))))))
12113ad2ant1 1080 . . . . . . . . . . . . . 14 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → 𝐹:ℕ⟶dom vol)
12223ad2ant1 1080 . . . . . . . . . . . . . 14 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → Disj 𝑖 ∈ ℕ (𝐹𝑖))
123 simp2 1060 . . . . . . . . . . . . . 14 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → 𝑥 ⊆ ℝ)
124 simp3 1061 . . . . . . . . . . . . . 14 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘𝑥) ∈ ℝ)
125121, 122, 3, 123, 124voliunlem1 23237 . . . . . . . . . . . . 13 (((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) ∧ 𝑘 ∈ ℕ) → ((seq1( + , 𝐻)‘𝑘) + (vol*‘(𝑥 ran 𝐹))) ≤ (vol*‘𝑥))
1261253exp1 1280 . . . . . . . . . . . 12 (𝜑 → (𝑥 ⊆ ℝ → ((vol*‘𝑥) ∈ ℝ → (𝑘 ∈ ℕ → ((seq1( + , 𝐻)‘𝑘) + (vol*‘(𝑥 ran 𝐹))) ≤ (vol*‘𝑥)))))
127120, 126vtoclg 3255 . . . . . . . . . . 11 ( ran 𝐹 ∈ 𝒫 ℝ → (𝜑 → ( ran 𝐹 ⊆ ℝ → ((vol*‘ ran 𝐹) ∈ ℝ → (𝑘 ∈ ℕ → (𝑆𝑘) ≤ (vol*‘ ran 𝐹))))))
12860, 127mpcom 38 . . . . . . . . . 10 (𝜑 → ( ran 𝐹 ⊆ ℝ → ((vol*‘ ran 𝐹) ∈ ℝ → (𝑘 ∈ ℕ → (𝑆𝑘) ≤ (vol*‘ ran 𝐹)))))
12945, 128mpd 15 . . . . . . . . 9 (𝜑 → ((vol*‘ ran 𝐹) ∈ ℝ → (𝑘 ∈ ℕ → (𝑆𝑘) ≤ (vol*‘ ran 𝐹))))
13058, 129sylbird 250 . . . . . . . 8 (𝜑 → ((-∞ < (vol*‘ ran 𝐹) ∧ (vol*‘ ran 𝐹) < +∞) → (𝑘 ∈ ℕ → (𝑆𝑘) ≤ (vol*‘ ran 𝐹))))
13156, 130mpand 710 . . . . . . 7 (𝜑 → ((vol*‘ ran 𝐹) < +∞ → (𝑘 ∈ ℕ → (𝑆𝑘) ≤ (vol*‘ ran 𝐹))))
132 nltpnft 11946 . . . . . . . . 9 ((vol*‘ ran 𝐹) ∈ ℝ* → ((vol*‘ ran 𝐹) = +∞ ↔ ¬ (vol*‘ ran 𝐹) < +∞))
13347, 132syl 17 . . . . . . . 8 (𝜑 → ((vol*‘ ran 𝐹) = +∞ ↔ ¬ (vol*‘ ran 𝐹) < +∞))
134 rexr 10036 . . . . . . . . . . 11 ((𝑆𝑘) ∈ ℝ → (𝑆𝑘) ∈ ℝ*)
135 pnfge 11915 . . . . . . . . . . 11 ((𝑆𝑘) ∈ ℝ* → (𝑆𝑘) ≤ +∞)
136108, 134, 1353syl 18 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (𝑆𝑘) ≤ +∞)
137136ex 450 . . . . . . . . 9 (𝜑 → (𝑘 ∈ ℕ → (𝑆𝑘) ≤ +∞))
138 breq2 4622 . . . . . . . . . 10 ((vol*‘ ran 𝐹) = +∞ → ((𝑆𝑘) ≤ (vol*‘ ran 𝐹) ↔ (𝑆𝑘) ≤ +∞))
139138imbi2d 330 . . . . . . . . 9 ((vol*‘ ran 𝐹) = +∞ → ((𝑘 ∈ ℕ → (𝑆𝑘) ≤ (vol*‘ ran 𝐹)) ↔ (𝑘 ∈ ℕ → (𝑆𝑘) ≤ +∞)))
140137, 139syl5ibrcom 237 . . . . . . . 8 (𝜑 → ((vol*‘ ran 𝐹) = +∞ → (𝑘 ∈ ℕ → (𝑆𝑘) ≤ (vol*‘ ran 𝐹))))
141133, 140sylbird 250 . . . . . . 7 (𝜑 → (¬ (vol*‘ ran 𝐹) < +∞ → (𝑘 ∈ ℕ → (𝑆𝑘) ≤ (vol*‘ ran 𝐹))))
142131, 141pm2.61d 170 . . . . . 6 (𝜑 → (𝑘 ∈ ℕ → (𝑆𝑘) ≤ (vol*‘ ran 𝐹)))
143142ralrimiv 2960 . . . . 5 (𝜑 → ∀𝑘 ∈ ℕ (𝑆𝑘) ≤ (vol*‘ ran 𝐹))
144 ffn 6007 . . . . . . 7 (𝑆:ℕ⟶ℝ → 𝑆 Fn ℕ)
145107, 144syl 17 . . . . . 6 (𝜑𝑆 Fn ℕ)
146 breq1 4621 . . . . . . 7 (𝑧 = (𝑆𝑘) → (𝑧 ≤ (vol*‘ ran 𝐹) ↔ (𝑆𝑘) ≤ (vol*‘ ran 𝐹)))
147146ralrn 6323 . . . . . 6 (𝑆 Fn ℕ → (∀𝑧 ∈ ran 𝑆 𝑧 ≤ (vol*‘ ran 𝐹) ↔ ∀𝑘 ∈ ℕ (𝑆𝑘) ≤ (vol*‘ ran 𝐹)))
148145, 147syl 17 . . . . 5 (𝜑 → (∀𝑧 ∈ ran 𝑆 𝑧 ≤ (vol*‘ ran 𝐹) ↔ ∀𝑘 ∈ ℕ (𝑆𝑘) ≤ (vol*‘ ran 𝐹)))
149143, 148mpbird 247 . . . 4 (𝜑 → ∀𝑧 ∈ ran 𝑆 𝑧 ≤ (vol*‘ ran 𝐹))
150 frn 6015 . . . . . . 7 (𝑆:ℕ⟶ℝ → ran 𝑆 ⊆ ℝ)
151107, 150syl 17 . . . . . 6 (𝜑 → ran 𝑆 ⊆ ℝ)
152 ressxr 10034 . . . . . 6 ℝ ⊆ ℝ*
153151, 152syl6ss 3599 . . . . 5 (𝜑 → ran 𝑆 ⊆ ℝ*)
154 supxrleub 12106 . . . . 5 ((ran 𝑆 ⊆ ℝ* ∧ (vol*‘ ran 𝐹) ∈ ℝ*) → (sup(ran 𝑆, ℝ*, < ) ≤ (vol*‘ ran 𝐹) ↔ ∀𝑧 ∈ ran 𝑆 𝑧 ≤ (vol*‘ ran 𝐹)))
155153, 47, 154syl2anc 692 . . . 4 (𝜑 → (sup(ran 𝑆, ℝ*, < ) ≤ (vol*‘ ran 𝐹) ↔ ∀𝑧 ∈ ran 𝑆 𝑧 ≤ (vol*‘ ran 𝐹)))
156149, 155mpbird 247 . . 3 (𝜑 → sup(ran 𝑆, ℝ*, < ) ≤ (vol*‘ ran 𝐹))
157 supxrcl 12095 . . . . 5 (ran 𝑆 ⊆ ℝ* → sup(ran 𝑆, ℝ*, < ) ∈ ℝ*)
158153, 157syl 17 . . . 4 (𝜑 → sup(ran 𝑆, ℝ*, < ) ∈ ℝ*)
159 xrletri3 11936 . . . 4 (((vol*‘ ran 𝐹) ∈ ℝ* ∧ sup(ran 𝑆, ℝ*, < ) ∈ ℝ*) → ((vol*‘ ran 𝐹) = sup(ran 𝑆, ℝ*, < ) ↔ ((vol*‘ ran 𝐹) ≤ sup(ran 𝑆, ℝ*, < ) ∧ sup(ran 𝑆, ℝ*, < ) ≤ (vol*‘ ran 𝐹))))
16047, 158, 159syl2anc 692 . . 3 (𝜑 → ((vol*‘ ran 𝐹) = sup(ran 𝑆, ℝ*, < ) ↔ ((vol*‘ ran 𝐹) ≤ sup(ran 𝑆, ℝ*, < ) ∧ sup(ran 𝑆, ℝ*, < ) ≤ (vol*‘ ran 𝐹))))
16135, 156, 160mpbir2and 956 . 2 (𝜑 → (vol*‘ ran 𝐹) = sup(ran 𝑆, ℝ*, < ))
1626, 161eqtrd 2655 1 (𝜑 → (vol‘ ran 𝐹) = sup(ran 𝑆, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987  wral 2907  cdif 3556  cin 3558  wss 3559  c0 3896  𝒫 cpw 4135   cuni 4407   ciun 4490  Disj wdisj 4588   class class class wbr 4618  cmpt 4678  dom cdm 5079  ran crn 5080   Fn wfn 5847  wf 5848  cfv 5852  (class class class)co 6610  supcsup 8297  cr 9886  0cc0 9887  1c1 9888   + caddc 9890  +∞cpnf 10022  -∞cmnf 10023  *cxr 10024   < clt 10025  cle 10026  cn 10971  seqcseq 12748  vol*covol 23150  volcvol 23151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-inf2 8489  ax-cc 9208  ax-cnex 9943  ax-resscn 9944  ax-1cn 9945  ax-icn 9946  ax-addcl 9947  ax-addrcl 9948  ax-mulcl 9949  ax-mulrcl 9950  ax-mulcom 9951  ax-addass 9952  ax-mulass 9953  ax-distr 9954  ax-i2m1 9955  ax-1ne0 9956  ax-1rid 9957  ax-rnegex 9958  ax-rrecex 9959  ax-cnre 9960  ax-pre-lttri 9961  ax-pre-lttrn 9962  ax-pre-ltadd 9963  ax-pre-mulgt0 9964  ax-pre-sup 9965
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-disj 4589  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-isom 5861  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-of 6857  df-om 7020  df-1st 7120  df-2nd 7121  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-2o 7513  df-oadd 7516  df-er 7694  df-map 7811  df-pm 7812  df-en 7907  df-dom 7908  df-sdom 7909  df-fin 7910  df-sup 8299  df-inf 8300  df-oi 8366  df-card 8716  df-cda 8941  df-pnf 10027  df-mnf 10028  df-xr 10029  df-ltxr 10030  df-le 10031  df-sub 10219  df-neg 10220  df-div 10636  df-nn 10972  df-2 11030  df-3 11031  df-n0 11244  df-z 11329  df-uz 11639  df-q 11740  df-rp 11784  df-xadd 11898  df-ioo 12128  df-ico 12130  df-icc 12131  df-fz 12276  df-fzo 12414  df-fl 12540  df-seq 12749  df-exp 12808  df-hash 13065  df-cj 13780  df-re 13781  df-im 13782  df-sqrt 13916  df-abs 13917  df-clim 14160  df-rlim 14161  df-sum 14358  df-xmet 19667  df-met 19668  df-ovol 23152  df-vol 23153
This theorem is referenced by:  voliun  23241
  Copyright terms: Public domain W3C validator