| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1e0p1 | Unicode version | ||
| Description: The successor of zero. (Contributed by Mario Carneiro, 18-Feb-2014.) |
| Ref | Expression |
|---|---|
| 1e0p1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0p1e1 9121 |
. 2
| |
| 2 | 1 | eqcomi 2200 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-ext 2178 ax-1cn 7989 ax-icn 7991 ax-addcl 7992 ax-mulcl 7994 ax-addcom 7996 ax-i2m1 8001 ax-0id 8004 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-clel 2192 |
| This theorem is referenced by: 6p5e11 9546 7p4e11 9549 8p3e11 9554 9p2e11 9560 fz1ssfz0 10209 fz0to3un2pr 10215 fzo01 10309 bcp1nk 10871 arisum2 11681 ege2le3 11853 ef4p 11876 efgt1p2 11877 efgt1p 11878 bitsmod 12138 prmdiv 12428 ennnfonelem1 12649 mulgnn0p1 13339 dveflem 15046 lgsdir2lem3 15355 lgseisenlem1 15395 |
| Copyright terms: Public domain | W3C validator |