| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1e0p1 | Unicode version | ||
| Description: The successor of zero. (Contributed by Mario Carneiro, 18-Feb-2014.) |
| Ref | Expression |
|---|---|
| 1e0p1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0p1e1 9152 |
. 2
| |
| 2 | 1 | eqcomi 2209 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-4 1533 ax-17 1549 ax-ial 1557 ax-ext 2187 ax-1cn 8020 ax-icn 8022 ax-addcl 8023 ax-mulcl 8025 ax-addcom 8027 ax-i2m1 8032 ax-0id 8035 |
| This theorem depends on definitions: df-bi 117 df-cleq 2198 df-clel 2201 |
| This theorem is referenced by: 6p5e11 9578 7p4e11 9581 8p3e11 9586 9p2e11 9592 fz1ssfz0 10241 fz0to3un2pr 10247 fzo01 10347 bcp1nk 10909 pfx1 11157 arisum2 11843 ege2le3 12015 ef4p 12038 efgt1p2 12039 efgt1p 12040 bitsmod 12300 prmdiv 12590 ennnfonelem1 12811 mulgnn0p1 13502 dveflem 15231 lgsdir2lem3 15540 lgseisenlem1 15580 |
| Copyright terms: Public domain | W3C validator |