| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1e0p1 | Unicode version | ||
| Description: The successor of zero. (Contributed by Mario Carneiro, 18-Feb-2014.) |
| Ref | Expression |
|---|---|
| 1e0p1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0p1e1 9224 |
. 2
| |
| 2 | 1 | eqcomi 2233 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 ax-17 1572 ax-ial 1580 ax-ext 2211 ax-1cn 8092 ax-icn 8094 ax-addcl 8095 ax-mulcl 8097 ax-addcom 8099 ax-i2m1 8104 ax-0id 8107 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 df-clel 2225 |
| This theorem is referenced by: 6p5e11 9650 7p4e11 9653 8p3e11 9658 9p2e11 9664 fz1ssfz0 10313 fz0to3un2pr 10319 fzo01 10422 bcp1nk 10984 pfx1 11235 arisum2 12010 ege2le3 12182 ef4p 12205 efgt1p2 12206 efgt1p 12207 bitsmod 12467 prmdiv 12757 ennnfonelem1 12978 mulgnn0p1 13670 dveflem 15400 lgsdir2lem3 15709 lgseisenlem1 15749 |
| Copyright terms: Public domain | W3C validator |