![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 1e0p1 | GIF version |
Description: The successor of zero. (Contributed by Mario Carneiro, 18-Feb-2014.) |
Ref | Expression |
---|---|
1e0p1 | ⊢ 1 = (0 + 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0p1e1 9098 | . 2 ⊢ (0 + 1) = 1 | |
2 | 1 | eqcomi 2197 | 1 ⊢ 1 = (0 + 1) |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 (class class class)co 5919 0cc0 7874 1c1 7875 + caddc 7877 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 ax-17 1537 ax-ial 1545 ax-ext 2175 ax-1cn 7967 ax-icn 7969 ax-addcl 7970 ax-mulcl 7972 ax-addcom 7974 ax-i2m1 7979 ax-0id 7982 |
This theorem depends on definitions: df-bi 117 df-cleq 2186 df-clel 2189 |
This theorem is referenced by: 6p5e11 9523 7p4e11 9526 8p3e11 9531 9p2e11 9537 fz1ssfz0 10186 fz0to3un2pr 10192 fzo01 10286 bcp1nk 10836 arisum2 11645 ege2le3 11817 ef4p 11840 efgt1p2 11841 efgt1p 11842 prmdiv 12376 ennnfonelem1 12567 mulgnn0p1 13206 dveflem 14905 lgsdir2lem3 15187 lgseisenlem1 15227 |
Copyright terms: Public domain | W3C validator |