Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 1e0p1 | GIF version |
Description: The successor of zero. (Contributed by Mario Carneiro, 18-Feb-2014.) |
Ref | Expression |
---|---|
1e0p1 | ⊢ 1 = (0 + 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0p1e1 8992 | . 2 ⊢ (0 + 1) = 1 | |
2 | 1 | eqcomi 2174 | 1 ⊢ 1 = (0 + 1) |
Colors of variables: wff set class |
Syntax hints: = wceq 1348 (class class class)co 5853 0cc0 7774 1c1 7775 + caddc 7777 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-4 1503 ax-17 1519 ax-ial 1527 ax-ext 2152 ax-1cn 7867 ax-icn 7869 ax-addcl 7870 ax-mulcl 7872 ax-addcom 7874 ax-i2m1 7879 ax-0id 7882 |
This theorem depends on definitions: df-bi 116 df-cleq 2163 df-clel 2166 |
This theorem is referenced by: 6p5e11 9415 7p4e11 9418 8p3e11 9423 9p2e11 9429 fz1ssfz0 10073 fz0to3un2pr 10079 fzo01 10172 bcp1nk 10696 arisum2 11462 ege2le3 11634 ef4p 11657 efgt1p2 11658 efgt1p 11659 prmdiv 12189 ennnfonelem1 12362 dveflem 13481 lgsdir2lem3 13725 |
Copyright terms: Public domain | W3C validator |