![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 1e0p1 | GIF version |
Description: The successor of zero. (Contributed by Mario Carneiro, 18-Feb-2014.) |
Ref | Expression |
---|---|
1e0p1 | ⊢ 1 = (0 + 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0p1e1 8599 | . 2 ⊢ (0 + 1) = 1 | |
2 | 1 | eqcomi 2093 | 1 ⊢ 1 = (0 + 1) |
Colors of variables: wff set class |
Syntax hints: = wceq 1290 (class class class)co 5668 0cc0 7413 1c1 7414 + caddc 7416 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1382 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-4 1446 ax-17 1465 ax-ial 1473 ax-ext 2071 ax-1cn 7501 ax-icn 7503 ax-addcl 7504 ax-mulcl 7506 ax-addcom 7508 ax-i2m1 7513 ax-0id 7516 |
This theorem depends on definitions: df-bi 116 df-cleq 2082 df-clel 2085 |
This theorem is referenced by: 6p5e11 9012 7p4e11 9015 8p3e11 9020 9p2e11 9026 fz1ssfz0 9594 fzo01 9690 bcp1nk 10233 arisum2 10956 ege2le3 11024 ef4p 11047 efgt1p2 11048 efgt1p 11049 |
Copyright terms: Public domain | W3C validator |