| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1e0p1 | GIF version | ||
| Description: The successor of zero. (Contributed by Mario Carneiro, 18-Feb-2014.) |
| Ref | Expression |
|---|---|
| 1e0p1 | ⊢ 1 = (0 + 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0p1e1 9185 | . 2 ⊢ (0 + 1) = 1 | |
| 2 | 1 | eqcomi 2211 | 1 ⊢ 1 = (0 + 1) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 (class class class)co 5967 0cc0 7960 1c1 7961 + caddc 7963 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 ax-17 1550 ax-ial 1558 ax-ext 2189 ax-1cn 8053 ax-icn 8055 ax-addcl 8056 ax-mulcl 8058 ax-addcom 8060 ax-i2m1 8065 ax-0id 8068 |
| This theorem depends on definitions: df-bi 117 df-cleq 2200 df-clel 2203 |
| This theorem is referenced by: 6p5e11 9611 7p4e11 9614 8p3e11 9619 9p2e11 9625 fz1ssfz0 10274 fz0to3un2pr 10280 fzo01 10382 bcp1nk 10944 pfx1 11194 arisum2 11925 ege2le3 12097 ef4p 12120 efgt1p2 12121 efgt1p 12122 bitsmod 12382 prmdiv 12672 ennnfonelem1 12893 mulgnn0p1 13584 dveflem 15313 lgsdir2lem3 15622 lgseisenlem1 15662 |
| Copyright terms: Public domain | W3C validator |