| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > 1e0p1 | GIF version | ||
| Description: The successor of zero. (Contributed by Mario Carneiro, 18-Feb-2014.) | 
| Ref | Expression | 
|---|---|
| 1e0p1 | ⊢ 1 = (0 + 1) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 0p1e1 9104 | . 2 ⊢ (0 + 1) = 1 | |
| 2 | 1 | eqcomi 2200 | 1 ⊢ 1 = (0 + 1) | 
| Colors of variables: wff set class | 
| Syntax hints: = wceq 1364 (class class class)co 5922 0cc0 7879 1c1 7880 + caddc 7882 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-ext 2178 ax-1cn 7972 ax-icn 7974 ax-addcl 7975 ax-mulcl 7977 ax-addcom 7979 ax-i2m1 7984 ax-0id 7987 | 
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-clel 2192 | 
| This theorem is referenced by: 6p5e11 9529 7p4e11 9532 8p3e11 9537 9p2e11 9543 fz1ssfz0 10192 fz0to3un2pr 10198 fzo01 10292 bcp1nk 10854 arisum2 11664 ege2le3 11836 ef4p 11859 efgt1p2 11860 efgt1p 11861 prmdiv 12403 ennnfonelem1 12624 mulgnn0p1 13263 dveflem 14962 lgsdir2lem3 15271 lgseisenlem1 15311 | 
| Copyright terms: Public domain | W3C validator |