| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1e0p1 | GIF version | ||
| Description: The successor of zero. (Contributed by Mario Carneiro, 18-Feb-2014.) |
| Ref | Expression |
|---|---|
| 1e0p1 | ⊢ 1 = (0 + 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0p1e1 9123 | . 2 ⊢ (0 + 1) = 1 | |
| 2 | 1 | eqcomi 2200 | 1 ⊢ 1 = (0 + 1) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 (class class class)co 5925 0cc0 7898 1c1 7899 + caddc 7901 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-ext 2178 ax-1cn 7991 ax-icn 7993 ax-addcl 7994 ax-mulcl 7996 ax-addcom 7998 ax-i2m1 8003 ax-0id 8006 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-clel 2192 |
| This theorem is referenced by: 6p5e11 9548 7p4e11 9551 8p3e11 9556 9p2e11 9562 fz1ssfz0 10211 fz0to3un2pr 10217 fzo01 10311 bcp1nk 10873 arisum2 11683 ege2le3 11855 ef4p 11878 efgt1p2 11879 efgt1p 11880 bitsmod 12140 prmdiv 12430 ennnfonelem1 12651 mulgnn0p1 13341 dveflem 15070 lgsdir2lem3 15379 lgseisenlem1 15419 |
| Copyright terms: Public domain | W3C validator |