Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 1e0p1 | GIF version |
Description: The successor of zero. (Contributed by Mario Carneiro, 18-Feb-2014.) |
Ref | Expression |
---|---|
1e0p1 | ⊢ 1 = (0 + 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0p1e1 8967 | . 2 ⊢ (0 + 1) = 1 | |
2 | 1 | eqcomi 2169 | 1 ⊢ 1 = (0 + 1) |
Colors of variables: wff set class |
Syntax hints: = wceq 1343 (class class class)co 5841 0cc0 7749 1c1 7750 + caddc 7752 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-17 1514 ax-ial 1522 ax-ext 2147 ax-1cn 7842 ax-icn 7844 ax-addcl 7845 ax-mulcl 7847 ax-addcom 7849 ax-i2m1 7854 ax-0id 7857 |
This theorem depends on definitions: df-bi 116 df-cleq 2158 df-clel 2161 |
This theorem is referenced by: 6p5e11 9390 7p4e11 9393 8p3e11 9398 9p2e11 9404 fz1ssfz0 10048 fz0to3un2pr 10054 fzo01 10147 bcp1nk 10671 arisum2 11436 ege2le3 11608 ef4p 11631 efgt1p2 11632 efgt1p 11633 prmdiv 12163 ennnfonelem1 12336 dveflem 13287 lgsdir2lem3 13531 |
Copyright terms: Public domain | W3C validator |