![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 1e0p1 | GIF version |
Description: The successor of zero. (Contributed by Mario Carneiro, 18-Feb-2014.) |
Ref | Expression |
---|---|
1e0p1 | ⊢ 1 = (0 + 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0p1e1 9096 | . 2 ⊢ (0 + 1) = 1 | |
2 | 1 | eqcomi 2197 | 1 ⊢ 1 = (0 + 1) |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 (class class class)co 5918 0cc0 7872 1c1 7873 + caddc 7875 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 ax-17 1537 ax-ial 1545 ax-ext 2175 ax-1cn 7965 ax-icn 7967 ax-addcl 7968 ax-mulcl 7970 ax-addcom 7972 ax-i2m1 7977 ax-0id 7980 |
This theorem depends on definitions: df-bi 117 df-cleq 2186 df-clel 2189 |
This theorem is referenced by: 6p5e11 9520 7p4e11 9523 8p3e11 9528 9p2e11 9534 fz1ssfz0 10183 fz0to3un2pr 10189 fzo01 10283 bcp1nk 10833 arisum2 11642 ege2le3 11814 ef4p 11837 efgt1p2 11838 efgt1p 11839 prmdiv 12373 ennnfonelem1 12564 mulgnn0p1 13203 dveflem 14872 lgsdir2lem3 15146 lgseisenlem1 15186 |
Copyright terms: Public domain | W3C validator |