ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ef4p Unicode version

Theorem ef4p 11635
Description: Separate out the first four terms of the infinite series expansion of the exponential function. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Mario Carneiro, 29-Apr-2014.)
Hypothesis
Ref Expression
ef4p.1  |-  F  =  ( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) )
Assertion
Ref Expression
ef4p  |-  ( A  e.  CC  ->  ( exp `  A )  =  ( ( ( ( 1  +  A )  +  ( ( A ^ 2 )  / 
2 ) )  +  ( ( A ^
3 )  /  6
) )  +  sum_ k  e.  ( ZZ>= ` 
4 ) ( F `
 k ) ) )
Distinct variable groups:    k, n, A   
k, F
Allowed substitution hint:    F( n)

Proof of Theorem ef4p
StepHypRef Expression
1 ef4p.1 . 2  |-  F  =  ( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) )
2 df-4 8918 . 2  |-  4  =  ( 3  +  1 )
3 3nn0 9132 . 2  |-  3  e.  NN0
4 id 19 . 2  |-  ( A  e.  CC  ->  A  e.  CC )
5 ax-1cn 7846 . . . 4  |-  1  e.  CC
6 addcl 7878 . . . 4  |-  ( ( 1  e.  CC  /\  A  e.  CC )  ->  ( 1  +  A
)  e.  CC )
75, 6mpan 421 . . 3  |-  ( A  e.  CC  ->  (
1  +  A )  e.  CC )
8 sqcl 10516 . . . 4  |-  ( A  e.  CC  ->  ( A ^ 2 )  e.  CC )
98halfcld 9101 . . 3  |-  ( A  e.  CC  ->  (
( A ^ 2 )  /  2 )  e.  CC )
107, 9addcld 7918 . 2  |-  ( A  e.  CC  ->  (
( 1  +  A
)  +  ( ( A ^ 2 )  /  2 ) )  e.  CC )
11 df-3 8917 . . 3  |-  3  =  ( 2  +  1 )
12 2nn0 9131 . . 3  |-  2  e.  NN0
13 df-2 8916 . . . 4  |-  2  =  ( 1  +  1 )
14 1nn0 9130 . . . 4  |-  1  e.  NN0
155a1i 9 . . . 4  |-  ( A  e.  CC  ->  1  e.  CC )
16 1e0p1 9363 . . . . 5  |-  1  =  ( 0  +  1 )
17 0nn0 9129 . . . . 5  |-  0  e.  NN0
18 0cnd 7892 . . . . 5  |-  ( A  e.  CC  ->  0  e.  CC )
191efval2 11606 . . . . . . . 8  |-  ( A  e.  CC  ->  ( exp `  A )  = 
sum_ k  e.  NN0  ( F `  k ) )
20 nn0uz 9500 . . . . . . . . 9  |-  NN0  =  ( ZZ>= `  0 )
2120sumeq1i 11304 . . . . . . . 8  |-  sum_ k  e.  NN0  ( F `  k )  =  sum_ k  e.  ( ZZ>= ` 
0 ) ( F `
 k )
2219, 21eqtr2di 2216 . . . . . . 7  |-  ( A  e.  CC  ->  sum_ k  e.  ( ZZ>= `  0 )
( F `  k
)  =  ( exp `  A ) )
2322oveq2d 5858 . . . . . 6  |-  ( A  e.  CC  ->  (
0  +  sum_ k  e.  ( ZZ>= `  0 )
( F `  k
) )  =  ( 0  +  ( exp `  A ) ) )
24 efcl 11605 . . . . . . 7  |-  ( A  e.  CC  ->  ( exp `  A )  e.  CC )
2524addid2d 8048 . . . . . 6  |-  ( A  e.  CC  ->  (
0  +  ( exp `  A ) )  =  ( exp `  A
) )
2623, 25eqtr2d 2199 . . . . 5  |-  ( A  e.  CC  ->  ( exp `  A )  =  ( 0  +  sum_ k  e.  ( ZZ>= ` 
0 ) ( F `
 k ) ) )
27 eft0val 11634 . . . . . . 7  |-  ( A  e.  CC  ->  (
( A ^ 0 )  /  ( ! `
 0 ) )  =  1 )
2827oveq2d 5858 . . . . . 6  |-  ( A  e.  CC  ->  (
0  +  ( ( A ^ 0 )  /  ( ! ` 
0 ) ) )  =  ( 0  +  1 ) )
29 0p1e1 8971 . . . . . 6  |-  ( 0  +  1 )  =  1
3028, 29eqtrdi 2215 . . . . 5  |-  ( A  e.  CC  ->  (
0  +  ( ( A ^ 0 )  /  ( ! ` 
0 ) ) )  =  1 )
311, 16, 17, 4, 18, 26, 30efsep 11632 . . . 4  |-  ( A  e.  CC  ->  ( exp `  A )  =  ( 1  +  sum_ k  e.  ( ZZ>= ` 
1 ) ( F `
 k ) ) )
32 exp1 10461 . . . . . . 7  |-  ( A  e.  CC  ->  ( A ^ 1 )  =  A )
33 fac1 10642 . . . . . . . 8  |-  ( ! `
 1 )  =  1
3433a1i 9 . . . . . . 7  |-  ( A  e.  CC  ->  ( ! `  1 )  =  1 )
3532, 34oveq12d 5860 . . . . . 6  |-  ( A  e.  CC  ->  (
( A ^ 1 )  /  ( ! `
 1 ) )  =  ( A  / 
1 ) )
36 div1 8599 . . . . . 6  |-  ( A  e.  CC  ->  ( A  /  1 )  =  A )
3735, 36eqtrd 2198 . . . . 5  |-  ( A  e.  CC  ->  (
( A ^ 1 )  /  ( ! `
 1 ) )  =  A )
3837oveq2d 5858 . . . 4  |-  ( A  e.  CC  ->  (
1  +  ( ( A ^ 1 )  /  ( ! ` 
1 ) ) )  =  ( 1  +  A ) )
391, 13, 14, 4, 15, 31, 38efsep 11632 . . 3  |-  ( A  e.  CC  ->  ( exp `  A )  =  ( ( 1  +  A )  +  sum_ k  e.  ( ZZ>= ` 
2 ) ( F `
 k ) ) )
40 fac2 10644 . . . . . 6  |-  ( ! `
 2 )  =  2
4140oveq2i 5853 . . . . 5  |-  ( ( A ^ 2 )  /  ( ! ` 
2 ) )  =  ( ( A ^
2 )  /  2
)
4241oveq2i 5853 . . . 4  |-  ( ( 1  +  A )  +  ( ( A ^ 2 )  / 
( ! `  2
) ) )  =  ( ( 1  +  A )  +  ( ( A ^ 2 )  /  2 ) )
4342a1i 9 . . 3  |-  ( A  e.  CC  ->  (
( 1  +  A
)  +  ( ( A ^ 2 )  /  ( ! ` 
2 ) ) )  =  ( ( 1  +  A )  +  ( ( A ^
2 )  /  2
) ) )
441, 11, 12, 4, 7, 39, 43efsep 11632 . 2  |-  ( A  e.  CC  ->  ( exp `  A )  =  ( ( ( 1  +  A )  +  ( ( A ^
2 )  /  2
) )  +  sum_ k  e.  ( ZZ>= ` 
3 ) ( F `
 k ) ) )
45 fac3 10645 . . . . 5  |-  ( ! `
 3 )  =  6
4645oveq2i 5853 . . . 4  |-  ( ( A ^ 3 )  /  ( ! ` 
3 ) )  =  ( ( A ^
3 )  /  6
)
4746oveq2i 5853 . . 3  |-  ( ( ( 1  +  A
)  +  ( ( A ^ 2 )  /  2 ) )  +  ( ( A ^ 3 )  / 
( ! `  3
) ) )  =  ( ( ( 1  +  A )  +  ( ( A ^
2 )  /  2
) )  +  ( ( A ^ 3 )  /  6 ) )
4847a1i 9 . 2  |-  ( A  e.  CC  ->  (
( ( 1  +  A )  +  ( ( A ^ 2 )  /  2 ) )  +  ( ( A ^ 3 )  /  ( ! ` 
3 ) ) )  =  ( ( ( 1  +  A )  +  ( ( A ^ 2 )  / 
2 ) )  +  ( ( A ^
3 )  /  6
) ) )
491, 2, 3, 4, 10, 44, 48efsep 11632 1  |-  ( A  e.  CC  ->  ( exp `  A )  =  ( ( ( ( 1  +  A )  +  ( ( A ^ 2 )  / 
2 ) )  +  ( ( A ^
3 )  /  6
) )  +  sum_ k  e.  ( ZZ>= ` 
4 ) ( F `
 k ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343    e. wcel 2136    |-> cmpt 4043   ` cfv 5188  (class class class)co 5842   CCcc 7751   0cc0 7753   1c1 7754    + caddc 7756    / cdiv 8568   2c2 8908   3c3 8909   4c4 8910   6c6 8912   NN0cn0 9114   ZZ>=cuz 9466   ^cexp 10454   !cfa 10638   sum_csu 11294   expce 11583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-isom 5197  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-frec 6359  df-1o 6384  df-oadd 6388  df-er 6501  df-en 6707  df-dom 6708  df-fin 6709  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-5 8919  df-6 8920  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-ico 9830  df-fz 9945  df-fzo 10078  df-seqfrec 10381  df-exp 10455  df-fac 10639  df-ihash 10689  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-clim 11220  df-sumdc 11295  df-ef 11589
This theorem is referenced by:  efi4p  11658
  Copyright terms: Public domain W3C validator