ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ef4p Unicode version

Theorem ef4p 12005
Description: Separate out the first four terms of the infinite series expansion of the exponential function. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Mario Carneiro, 29-Apr-2014.)
Hypothesis
Ref Expression
ef4p.1  |-  F  =  ( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) )
Assertion
Ref Expression
ef4p  |-  ( A  e.  CC  ->  ( exp `  A )  =  ( ( ( ( 1  +  A )  +  ( ( A ^ 2 )  / 
2 ) )  +  ( ( A ^
3 )  /  6
) )  +  sum_ k  e.  ( ZZ>= ` 
4 ) ( F `
 k ) ) )
Distinct variable groups:    k, n, A   
k, F
Allowed substitution hint:    F( n)

Proof of Theorem ef4p
StepHypRef Expression
1 ef4p.1 . 2  |-  F  =  ( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) )
2 df-4 9097 . 2  |-  4  =  ( 3  +  1 )
3 3nn0 9313 . 2  |-  3  e.  NN0
4 id 19 . 2  |-  ( A  e.  CC  ->  A  e.  CC )
5 ax-1cn 8018 . . . 4  |-  1  e.  CC
6 addcl 8050 . . . 4  |-  ( ( 1  e.  CC  /\  A  e.  CC )  ->  ( 1  +  A
)  e.  CC )
75, 6mpan 424 . . 3  |-  ( A  e.  CC  ->  (
1  +  A )  e.  CC )
8 sqcl 10745 . . . 4  |-  ( A  e.  CC  ->  ( A ^ 2 )  e.  CC )
98halfcld 9282 . . 3  |-  ( A  e.  CC  ->  (
( A ^ 2 )  /  2 )  e.  CC )
107, 9addcld 8092 . 2  |-  ( A  e.  CC  ->  (
( 1  +  A
)  +  ( ( A ^ 2 )  /  2 ) )  e.  CC )
11 df-3 9096 . . 3  |-  3  =  ( 2  +  1 )
12 2nn0 9312 . . 3  |-  2  e.  NN0
13 df-2 9095 . . . 4  |-  2  =  ( 1  +  1 )
14 1nn0 9311 . . . 4  |-  1  e.  NN0
155a1i 9 . . . 4  |-  ( A  e.  CC  ->  1  e.  CC )
16 1e0p1 9545 . . . . 5  |-  1  =  ( 0  +  1 )
17 0nn0 9310 . . . . 5  |-  0  e.  NN0
18 0cnd 8065 . . . . 5  |-  ( A  e.  CC  ->  0  e.  CC )
191efval2 11976 . . . . . . . 8  |-  ( A  e.  CC  ->  ( exp `  A )  = 
sum_ k  e.  NN0  ( F `  k ) )
20 nn0uz 9683 . . . . . . . . 9  |-  NN0  =  ( ZZ>= `  0 )
2120sumeq1i 11674 . . . . . . . 8  |-  sum_ k  e.  NN0  ( F `  k )  =  sum_ k  e.  ( ZZ>= ` 
0 ) ( F `
 k )
2219, 21eqtr2di 2255 . . . . . . 7  |-  ( A  e.  CC  ->  sum_ k  e.  ( ZZ>= `  0 )
( F `  k
)  =  ( exp `  A ) )
2322oveq2d 5960 . . . . . 6  |-  ( A  e.  CC  ->  (
0  +  sum_ k  e.  ( ZZ>= `  0 )
( F `  k
) )  =  ( 0  +  ( exp `  A ) ) )
24 efcl 11975 . . . . . . 7  |-  ( A  e.  CC  ->  ( exp `  A )  e.  CC )
2524addlidd 8222 . . . . . 6  |-  ( A  e.  CC  ->  (
0  +  ( exp `  A ) )  =  ( exp `  A
) )
2623, 25eqtr2d 2239 . . . . 5  |-  ( A  e.  CC  ->  ( exp `  A )  =  ( 0  +  sum_ k  e.  ( ZZ>= ` 
0 ) ( F `
 k ) ) )
27 eft0val 12004 . . . . . . 7  |-  ( A  e.  CC  ->  (
( A ^ 0 )  /  ( ! `
 0 ) )  =  1 )
2827oveq2d 5960 . . . . . 6  |-  ( A  e.  CC  ->  (
0  +  ( ( A ^ 0 )  /  ( ! ` 
0 ) ) )  =  ( 0  +  1 ) )
29 0p1e1 9150 . . . . . 6  |-  ( 0  +  1 )  =  1
3028, 29eqtrdi 2254 . . . . 5  |-  ( A  e.  CC  ->  (
0  +  ( ( A ^ 0 )  /  ( ! ` 
0 ) ) )  =  1 )
311, 16, 17, 4, 18, 26, 30efsep 12002 . . . 4  |-  ( A  e.  CC  ->  ( exp `  A )  =  ( 1  +  sum_ k  e.  ( ZZ>= ` 
1 ) ( F `
 k ) ) )
32 exp1 10690 . . . . . . 7  |-  ( A  e.  CC  ->  ( A ^ 1 )  =  A )
33 fac1 10874 . . . . . . . 8  |-  ( ! `
 1 )  =  1
3433a1i 9 . . . . . . 7  |-  ( A  e.  CC  ->  ( ! `  1 )  =  1 )
3532, 34oveq12d 5962 . . . . . 6  |-  ( A  e.  CC  ->  (
( A ^ 1 )  /  ( ! `
 1 ) )  =  ( A  / 
1 ) )
36 div1 8776 . . . . . 6  |-  ( A  e.  CC  ->  ( A  /  1 )  =  A )
3735, 36eqtrd 2238 . . . . 5  |-  ( A  e.  CC  ->  (
( A ^ 1 )  /  ( ! `
 1 ) )  =  A )
3837oveq2d 5960 . . . 4  |-  ( A  e.  CC  ->  (
1  +  ( ( A ^ 1 )  /  ( ! ` 
1 ) ) )  =  ( 1  +  A ) )
391, 13, 14, 4, 15, 31, 38efsep 12002 . . 3  |-  ( A  e.  CC  ->  ( exp `  A )  =  ( ( 1  +  A )  +  sum_ k  e.  ( ZZ>= ` 
2 ) ( F `
 k ) ) )
40 fac2 10876 . . . . . 6  |-  ( ! `
 2 )  =  2
4140oveq2i 5955 . . . . 5  |-  ( ( A ^ 2 )  /  ( ! ` 
2 ) )  =  ( ( A ^
2 )  /  2
)
4241oveq2i 5955 . . . 4  |-  ( ( 1  +  A )  +  ( ( A ^ 2 )  / 
( ! `  2
) ) )  =  ( ( 1  +  A )  +  ( ( A ^ 2 )  /  2 ) )
4342a1i 9 . . 3  |-  ( A  e.  CC  ->  (
( 1  +  A
)  +  ( ( A ^ 2 )  /  ( ! ` 
2 ) ) )  =  ( ( 1  +  A )  +  ( ( A ^
2 )  /  2
) ) )
441, 11, 12, 4, 7, 39, 43efsep 12002 . 2  |-  ( A  e.  CC  ->  ( exp `  A )  =  ( ( ( 1  +  A )  +  ( ( A ^
2 )  /  2
) )  +  sum_ k  e.  ( ZZ>= ` 
3 ) ( F `
 k ) ) )
45 fac3 10877 . . . . 5  |-  ( ! `
 3 )  =  6
4645oveq2i 5955 . . . 4  |-  ( ( A ^ 3 )  /  ( ! ` 
3 ) )  =  ( ( A ^
3 )  /  6
)
4746oveq2i 5955 . . 3  |-  ( ( ( 1  +  A
)  +  ( ( A ^ 2 )  /  2 ) )  +  ( ( A ^ 3 )  / 
( ! `  3
) ) )  =  ( ( ( 1  +  A )  +  ( ( A ^
2 )  /  2
) )  +  ( ( A ^ 3 )  /  6 ) )
4847a1i 9 . 2  |-  ( A  e.  CC  ->  (
( ( 1  +  A )  +  ( ( A ^ 2 )  /  2 ) )  +  ( ( A ^ 3 )  /  ( ! ` 
3 ) ) )  =  ( ( ( 1  +  A )  +  ( ( A ^ 2 )  / 
2 ) )  +  ( ( A ^
3 )  /  6
) ) )
491, 2, 3, 4, 10, 44, 48efsep 12002 1  |-  ( A  e.  CC  ->  ( exp `  A )  =  ( ( ( ( 1  +  A )  +  ( ( A ^ 2 )  / 
2 ) )  +  ( ( A ^
3 )  /  6
) )  +  sum_ k  e.  ( ZZ>= ` 
4 ) ( F `
 k ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2176    |-> cmpt 4105   ` cfv 5271  (class class class)co 5944   CCcc 7923   0cc0 7925   1c1 7926    + caddc 7928    / cdiv 8745   2c2 9087   3c3 9088   4c4 9089   6c6 9091   NN0cn0 9295   ZZ>=cuz 9648   ^cexp 10683   !cfa 10870   sum_csu 11664   expce 11953
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043  ax-arch 8044  ax-caucvg 8045
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-po 4343  df-iso 4344  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-irdg 6456  df-frec 6477  df-1o 6502  df-oadd 6506  df-er 6620  df-en 6828  df-dom 6829  df-fin 6830  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655  df-div 8746  df-inn 9037  df-2 9095  df-3 9096  df-4 9097  df-5 9098  df-6 9099  df-n0 9296  df-z 9373  df-uz 9649  df-q 9741  df-rp 9776  df-ico 10016  df-fz 10131  df-fzo 10265  df-seqfrec 10593  df-exp 10684  df-fac 10871  df-ihash 10921  df-cj 11153  df-re 11154  df-im 11155  df-rsqrt 11309  df-abs 11310  df-clim 11590  df-sumdc 11665  df-ef 11959
This theorem is referenced by:  efi4p  12028
  Copyright terms: Public domain W3C validator