ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ef4p Unicode version

Theorem ef4p 12120
Description: Separate out the first four terms of the infinite series expansion of the exponential function. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Mario Carneiro, 29-Apr-2014.)
Hypothesis
Ref Expression
ef4p.1  |-  F  =  ( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) )
Assertion
Ref Expression
ef4p  |-  ( A  e.  CC  ->  ( exp `  A )  =  ( ( ( ( 1  +  A )  +  ( ( A ^ 2 )  / 
2 ) )  +  ( ( A ^
3 )  /  6
) )  +  sum_ k  e.  ( ZZ>= ` 
4 ) ( F `
 k ) ) )
Distinct variable groups:    k, n, A   
k, F
Allowed substitution hint:    F( n)

Proof of Theorem ef4p
StepHypRef Expression
1 ef4p.1 . 2  |-  F  =  ( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) )
2 df-4 9132 . 2  |-  4  =  ( 3  +  1 )
3 3nn0 9348 . 2  |-  3  e.  NN0
4 id 19 . 2  |-  ( A  e.  CC  ->  A  e.  CC )
5 ax-1cn 8053 . . . 4  |-  1  e.  CC
6 addcl 8085 . . . 4  |-  ( ( 1  e.  CC  /\  A  e.  CC )  ->  ( 1  +  A
)  e.  CC )
75, 6mpan 424 . . 3  |-  ( A  e.  CC  ->  (
1  +  A )  e.  CC )
8 sqcl 10782 . . . 4  |-  ( A  e.  CC  ->  ( A ^ 2 )  e.  CC )
98halfcld 9317 . . 3  |-  ( A  e.  CC  ->  (
( A ^ 2 )  /  2 )  e.  CC )
107, 9addcld 8127 . 2  |-  ( A  e.  CC  ->  (
( 1  +  A
)  +  ( ( A ^ 2 )  /  2 ) )  e.  CC )
11 df-3 9131 . . 3  |-  3  =  ( 2  +  1 )
12 2nn0 9347 . . 3  |-  2  e.  NN0
13 df-2 9130 . . . 4  |-  2  =  ( 1  +  1 )
14 1nn0 9346 . . . 4  |-  1  e.  NN0
155a1i 9 . . . 4  |-  ( A  e.  CC  ->  1  e.  CC )
16 1e0p1 9580 . . . . 5  |-  1  =  ( 0  +  1 )
17 0nn0 9345 . . . . 5  |-  0  e.  NN0
18 0cnd 8100 . . . . 5  |-  ( A  e.  CC  ->  0  e.  CC )
191efval2 12091 . . . . . . . 8  |-  ( A  e.  CC  ->  ( exp `  A )  = 
sum_ k  e.  NN0  ( F `  k ) )
20 nn0uz 9718 . . . . . . . . 9  |-  NN0  =  ( ZZ>= `  0 )
2120sumeq1i 11789 . . . . . . . 8  |-  sum_ k  e.  NN0  ( F `  k )  =  sum_ k  e.  ( ZZ>= ` 
0 ) ( F `
 k )
2219, 21eqtr2di 2257 . . . . . . 7  |-  ( A  e.  CC  ->  sum_ k  e.  ( ZZ>= `  0 )
( F `  k
)  =  ( exp `  A ) )
2322oveq2d 5983 . . . . . 6  |-  ( A  e.  CC  ->  (
0  +  sum_ k  e.  ( ZZ>= `  0 )
( F `  k
) )  =  ( 0  +  ( exp `  A ) ) )
24 efcl 12090 . . . . . . 7  |-  ( A  e.  CC  ->  ( exp `  A )  e.  CC )
2524addlidd 8257 . . . . . 6  |-  ( A  e.  CC  ->  (
0  +  ( exp `  A ) )  =  ( exp `  A
) )
2623, 25eqtr2d 2241 . . . . 5  |-  ( A  e.  CC  ->  ( exp `  A )  =  ( 0  +  sum_ k  e.  ( ZZ>= ` 
0 ) ( F `
 k ) ) )
27 eft0val 12119 . . . . . . 7  |-  ( A  e.  CC  ->  (
( A ^ 0 )  /  ( ! `
 0 ) )  =  1 )
2827oveq2d 5983 . . . . . 6  |-  ( A  e.  CC  ->  (
0  +  ( ( A ^ 0 )  /  ( ! ` 
0 ) ) )  =  ( 0  +  1 ) )
29 0p1e1 9185 . . . . . 6  |-  ( 0  +  1 )  =  1
3028, 29eqtrdi 2256 . . . . 5  |-  ( A  e.  CC  ->  (
0  +  ( ( A ^ 0 )  /  ( ! ` 
0 ) ) )  =  1 )
311, 16, 17, 4, 18, 26, 30efsep 12117 . . . 4  |-  ( A  e.  CC  ->  ( exp `  A )  =  ( 1  +  sum_ k  e.  ( ZZ>= ` 
1 ) ( F `
 k ) ) )
32 exp1 10727 . . . . . . 7  |-  ( A  e.  CC  ->  ( A ^ 1 )  =  A )
33 fac1 10911 . . . . . . . 8  |-  ( ! `
 1 )  =  1
3433a1i 9 . . . . . . 7  |-  ( A  e.  CC  ->  ( ! `  1 )  =  1 )
3532, 34oveq12d 5985 . . . . . 6  |-  ( A  e.  CC  ->  (
( A ^ 1 )  /  ( ! `
 1 ) )  =  ( A  / 
1 ) )
36 div1 8811 . . . . . 6  |-  ( A  e.  CC  ->  ( A  /  1 )  =  A )
3735, 36eqtrd 2240 . . . . 5  |-  ( A  e.  CC  ->  (
( A ^ 1 )  /  ( ! `
 1 ) )  =  A )
3837oveq2d 5983 . . . 4  |-  ( A  e.  CC  ->  (
1  +  ( ( A ^ 1 )  /  ( ! ` 
1 ) ) )  =  ( 1  +  A ) )
391, 13, 14, 4, 15, 31, 38efsep 12117 . . 3  |-  ( A  e.  CC  ->  ( exp `  A )  =  ( ( 1  +  A )  +  sum_ k  e.  ( ZZ>= ` 
2 ) ( F `
 k ) ) )
40 fac2 10913 . . . . . 6  |-  ( ! `
 2 )  =  2
4140oveq2i 5978 . . . . 5  |-  ( ( A ^ 2 )  /  ( ! ` 
2 ) )  =  ( ( A ^
2 )  /  2
)
4241oveq2i 5978 . . . 4  |-  ( ( 1  +  A )  +  ( ( A ^ 2 )  / 
( ! `  2
) ) )  =  ( ( 1  +  A )  +  ( ( A ^ 2 )  /  2 ) )
4342a1i 9 . . 3  |-  ( A  e.  CC  ->  (
( 1  +  A
)  +  ( ( A ^ 2 )  /  ( ! ` 
2 ) ) )  =  ( ( 1  +  A )  +  ( ( A ^
2 )  /  2
) ) )
441, 11, 12, 4, 7, 39, 43efsep 12117 . 2  |-  ( A  e.  CC  ->  ( exp `  A )  =  ( ( ( 1  +  A )  +  ( ( A ^
2 )  /  2
) )  +  sum_ k  e.  ( ZZ>= ` 
3 ) ( F `
 k ) ) )
45 fac3 10914 . . . . 5  |-  ( ! `
 3 )  =  6
4645oveq2i 5978 . . . 4  |-  ( ( A ^ 3 )  /  ( ! ` 
3 ) )  =  ( ( A ^
3 )  /  6
)
4746oveq2i 5978 . . 3  |-  ( ( ( 1  +  A
)  +  ( ( A ^ 2 )  /  2 ) )  +  ( ( A ^ 3 )  / 
( ! `  3
) ) )  =  ( ( ( 1  +  A )  +  ( ( A ^
2 )  /  2
) )  +  ( ( A ^ 3 )  /  6 ) )
4847a1i 9 . 2  |-  ( A  e.  CC  ->  (
( ( 1  +  A )  +  ( ( A ^ 2 )  /  2 ) )  +  ( ( A ^ 3 )  /  ( ! ` 
3 ) ) )  =  ( ( ( 1  +  A )  +  ( ( A ^ 2 )  / 
2 ) )  +  ( ( A ^
3 )  /  6
) ) )
491, 2, 3, 4, 10, 44, 48efsep 12117 1  |-  ( A  e.  CC  ->  ( exp `  A )  =  ( ( ( ( 1  +  A )  +  ( ( A ^ 2 )  / 
2 ) )  +  ( ( A ^
3 )  /  6
) )  +  sum_ k  e.  ( ZZ>= ` 
4 ) ( F `
 k ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2178    |-> cmpt 4121   ` cfv 5290  (class class class)co 5967   CCcc 7958   0cc0 7960   1c1 7961    + caddc 7963    / cdiv 8780   2c2 9122   3c3 9123   4c4 9124   6c6 9126   NN0cn0 9330   ZZ>=cuz 9683   ^cexp 10720   !cfa 10907   sum_csu 11779   expce 12068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078  ax-arch 8079  ax-caucvg 8080
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-isom 5299  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-irdg 6479  df-frec 6500  df-1o 6525  df-oadd 6529  df-er 6643  df-en 6851  df-dom 6852  df-fin 6853  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-5 9133  df-6 9134  df-n0 9331  df-z 9408  df-uz 9684  df-q 9776  df-rp 9811  df-ico 10051  df-fz 10166  df-fzo 10300  df-seqfrec 10630  df-exp 10721  df-fac 10908  df-ihash 10958  df-cj 11268  df-re 11269  df-im 11270  df-rsqrt 11424  df-abs 11425  df-clim 11705  df-sumdc 11780  df-ef 12074
This theorem is referenced by:  efi4p  12143
  Copyright terms: Public domain W3C validator