ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ef4p Unicode version

Theorem ef4p 11734
Description: Separate out the first four terms of the infinite series expansion of the exponential function. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Mario Carneiro, 29-Apr-2014.)
Hypothesis
Ref Expression
ef4p.1  |-  F  =  ( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) )
Assertion
Ref Expression
ef4p  |-  ( A  e.  CC  ->  ( exp `  A )  =  ( ( ( ( 1  +  A )  +  ( ( A ^ 2 )  / 
2 ) )  +  ( ( A ^
3 )  /  6
) )  +  sum_ k  e.  ( ZZ>= ` 
4 ) ( F `
 k ) ) )
Distinct variable groups:    k, n, A   
k, F
Allowed substitution hint:    F( n)

Proof of Theorem ef4p
StepHypRef Expression
1 ef4p.1 . 2  |-  F  =  ( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) )
2 df-4 9010 . 2  |-  4  =  ( 3  +  1 )
3 3nn0 9224 . 2  |-  3  e.  NN0
4 id 19 . 2  |-  ( A  e.  CC  ->  A  e.  CC )
5 ax-1cn 7934 . . . 4  |-  1  e.  CC
6 addcl 7966 . . . 4  |-  ( ( 1  e.  CC  /\  A  e.  CC )  ->  ( 1  +  A
)  e.  CC )
75, 6mpan 424 . . 3  |-  ( A  e.  CC  ->  (
1  +  A )  e.  CC )
8 sqcl 10612 . . . 4  |-  ( A  e.  CC  ->  ( A ^ 2 )  e.  CC )
98halfcld 9193 . . 3  |-  ( A  e.  CC  ->  (
( A ^ 2 )  /  2 )  e.  CC )
107, 9addcld 8007 . 2  |-  ( A  e.  CC  ->  (
( 1  +  A
)  +  ( ( A ^ 2 )  /  2 ) )  e.  CC )
11 df-3 9009 . . 3  |-  3  =  ( 2  +  1 )
12 2nn0 9223 . . 3  |-  2  e.  NN0
13 df-2 9008 . . . 4  |-  2  =  ( 1  +  1 )
14 1nn0 9222 . . . 4  |-  1  e.  NN0
155a1i 9 . . . 4  |-  ( A  e.  CC  ->  1  e.  CC )
16 1e0p1 9455 . . . . 5  |-  1  =  ( 0  +  1 )
17 0nn0 9221 . . . . 5  |-  0  e.  NN0
18 0cnd 7980 . . . . 5  |-  ( A  e.  CC  ->  0  e.  CC )
191efval2 11705 . . . . . . . 8  |-  ( A  e.  CC  ->  ( exp `  A )  = 
sum_ k  e.  NN0  ( F `  k ) )
20 nn0uz 9592 . . . . . . . . 9  |-  NN0  =  ( ZZ>= `  0 )
2120sumeq1i 11403 . . . . . . . 8  |-  sum_ k  e.  NN0  ( F `  k )  =  sum_ k  e.  ( ZZ>= ` 
0 ) ( F `
 k )
2219, 21eqtr2di 2239 . . . . . . 7  |-  ( A  e.  CC  ->  sum_ k  e.  ( ZZ>= `  0 )
( F `  k
)  =  ( exp `  A ) )
2322oveq2d 5912 . . . . . 6  |-  ( A  e.  CC  ->  (
0  +  sum_ k  e.  ( ZZ>= `  0 )
( F `  k
) )  =  ( 0  +  ( exp `  A ) ) )
24 efcl 11704 . . . . . . 7  |-  ( A  e.  CC  ->  ( exp `  A )  e.  CC )
2524addlidd 8137 . . . . . 6  |-  ( A  e.  CC  ->  (
0  +  ( exp `  A ) )  =  ( exp `  A
) )
2623, 25eqtr2d 2223 . . . . 5  |-  ( A  e.  CC  ->  ( exp `  A )  =  ( 0  +  sum_ k  e.  ( ZZ>= ` 
0 ) ( F `
 k ) ) )
27 eft0val 11733 . . . . . . 7  |-  ( A  e.  CC  ->  (
( A ^ 0 )  /  ( ! `
 0 ) )  =  1 )
2827oveq2d 5912 . . . . . 6  |-  ( A  e.  CC  ->  (
0  +  ( ( A ^ 0 )  /  ( ! ` 
0 ) ) )  =  ( 0  +  1 ) )
29 0p1e1 9063 . . . . . 6  |-  ( 0  +  1 )  =  1
3028, 29eqtrdi 2238 . . . . 5  |-  ( A  e.  CC  ->  (
0  +  ( ( A ^ 0 )  /  ( ! ` 
0 ) ) )  =  1 )
311, 16, 17, 4, 18, 26, 30efsep 11731 . . . 4  |-  ( A  e.  CC  ->  ( exp `  A )  =  ( 1  +  sum_ k  e.  ( ZZ>= ` 
1 ) ( F `
 k ) ) )
32 exp1 10557 . . . . . . 7  |-  ( A  e.  CC  ->  ( A ^ 1 )  =  A )
33 fac1 10741 . . . . . . . 8  |-  ( ! `
 1 )  =  1
3433a1i 9 . . . . . . 7  |-  ( A  e.  CC  ->  ( ! `  1 )  =  1 )
3532, 34oveq12d 5914 . . . . . 6  |-  ( A  e.  CC  ->  (
( A ^ 1 )  /  ( ! `
 1 ) )  =  ( A  / 
1 ) )
36 div1 8690 . . . . . 6  |-  ( A  e.  CC  ->  ( A  /  1 )  =  A )
3735, 36eqtrd 2222 . . . . 5  |-  ( A  e.  CC  ->  (
( A ^ 1 )  /  ( ! `
 1 ) )  =  A )
3837oveq2d 5912 . . . 4  |-  ( A  e.  CC  ->  (
1  +  ( ( A ^ 1 )  /  ( ! ` 
1 ) ) )  =  ( 1  +  A ) )
391, 13, 14, 4, 15, 31, 38efsep 11731 . . 3  |-  ( A  e.  CC  ->  ( exp `  A )  =  ( ( 1  +  A )  +  sum_ k  e.  ( ZZ>= ` 
2 ) ( F `
 k ) ) )
40 fac2 10743 . . . . . 6  |-  ( ! `
 2 )  =  2
4140oveq2i 5907 . . . . 5  |-  ( ( A ^ 2 )  /  ( ! ` 
2 ) )  =  ( ( A ^
2 )  /  2
)
4241oveq2i 5907 . . . 4  |-  ( ( 1  +  A )  +  ( ( A ^ 2 )  / 
( ! `  2
) ) )  =  ( ( 1  +  A )  +  ( ( A ^ 2 )  /  2 ) )
4342a1i 9 . . 3  |-  ( A  e.  CC  ->  (
( 1  +  A
)  +  ( ( A ^ 2 )  /  ( ! ` 
2 ) ) )  =  ( ( 1  +  A )  +  ( ( A ^
2 )  /  2
) ) )
441, 11, 12, 4, 7, 39, 43efsep 11731 . 2  |-  ( A  e.  CC  ->  ( exp `  A )  =  ( ( ( 1  +  A )  +  ( ( A ^
2 )  /  2
) )  +  sum_ k  e.  ( ZZ>= ` 
3 ) ( F `
 k ) ) )
45 fac3 10744 . . . . 5  |-  ( ! `
 3 )  =  6
4645oveq2i 5907 . . . 4  |-  ( ( A ^ 3 )  /  ( ! ` 
3 ) )  =  ( ( A ^
3 )  /  6
)
4746oveq2i 5907 . . 3  |-  ( ( ( 1  +  A
)  +  ( ( A ^ 2 )  /  2 ) )  +  ( ( A ^ 3 )  / 
( ! `  3
) ) )  =  ( ( ( 1  +  A )  +  ( ( A ^
2 )  /  2
) )  +  ( ( A ^ 3 )  /  6 ) )
4847a1i 9 . 2  |-  ( A  e.  CC  ->  (
( ( 1  +  A )  +  ( ( A ^ 2 )  /  2 ) )  +  ( ( A ^ 3 )  /  ( ! ` 
3 ) ) )  =  ( ( ( 1  +  A )  +  ( ( A ^ 2 )  / 
2 ) )  +  ( ( A ^
3 )  /  6
) ) )
491, 2, 3, 4, 10, 44, 48efsep 11731 1  |-  ( A  e.  CC  ->  ( exp `  A )  =  ( ( ( ( 1  +  A )  +  ( ( A ^ 2 )  / 
2 ) )  +  ( ( A ^
3 )  /  6
) )  +  sum_ k  e.  ( ZZ>= ` 
4 ) ( F `
 k ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2160    |-> cmpt 4079   ` cfv 5235  (class class class)co 5896   CCcc 7839   0cc0 7841   1c1 7842    + caddc 7844    / cdiv 8659   2c2 9000   3c3 9001   4c4 9002   6c6 9004   NN0cn0 9206   ZZ>=cuz 9558   ^cexp 10550   !cfa 10737   sum_csu 11393   expce 11682
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605  ax-cnex 7932  ax-resscn 7933  ax-1cn 7934  ax-1re 7935  ax-icn 7936  ax-addcl 7937  ax-addrcl 7938  ax-mulcl 7939  ax-mulrcl 7940  ax-addcom 7941  ax-mulcom 7942  ax-addass 7943  ax-mulass 7944  ax-distr 7945  ax-i2m1 7946  ax-0lt1 7947  ax-1rid 7948  ax-0id 7949  ax-rnegex 7950  ax-precex 7951  ax-cnre 7952  ax-pre-ltirr 7953  ax-pre-ltwlin 7954  ax-pre-lttrn 7955  ax-pre-apti 7956  ax-pre-ltadd 7957  ax-pre-mulgt0 7958  ax-pre-mulext 7959  ax-arch 7960  ax-caucvg 7961
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4311  df-po 4314  df-iso 4315  df-iord 4384  df-on 4386  df-ilim 4387  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-isom 5244  df-riota 5852  df-ov 5899  df-oprab 5900  df-mpo 5901  df-1st 6165  df-2nd 6166  df-recs 6330  df-irdg 6395  df-frec 6416  df-1o 6441  df-oadd 6445  df-er 6559  df-en 6767  df-dom 6768  df-fin 6769  df-pnf 8024  df-mnf 8025  df-xr 8026  df-ltxr 8027  df-le 8028  df-sub 8160  df-neg 8161  df-reap 8562  df-ap 8569  df-div 8660  df-inn 8950  df-2 9008  df-3 9009  df-4 9010  df-5 9011  df-6 9012  df-n0 9207  df-z 9284  df-uz 9559  df-q 9650  df-rp 9684  df-ico 9924  df-fz 10039  df-fzo 10173  df-seqfrec 10477  df-exp 10551  df-fac 10738  df-ihash 10788  df-cj 10883  df-re 10884  df-im 10885  df-rsqrt 11039  df-abs 11040  df-clim 11319  df-sumdc 11394  df-ef 11688
This theorem is referenced by:  efi4p  11757
  Copyright terms: Public domain W3C validator