ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prmdiv Unicode version

Theorem prmdiv 12752
Description: Show an explicit expression for the modular inverse of  A  mod  P. (Contributed by Mario Carneiro, 24-Jan-2015.)
Hypothesis
Ref Expression
prmdiv.1  |-  R  =  ( ( A ^
( P  -  2 ) )  mod  P
)
Assertion
Ref Expression
prmdiv  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( R  e.  ( 1 ... ( P  - 
1 ) )  /\  P  ||  ( ( A  x.  R )  - 
1 ) ) )

Proof of Theorem prmdiv
StepHypRef Expression
1 nprmdvds1 12657 . . . . . 6  |-  ( P  e.  Prime  ->  -.  P  ||  1 )
213ad2ant1 1042 . . . . 5  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  -.  P  ||  1 )
3 prmz 12628 . . . . . . . . . 10  |-  ( P  e.  Prime  ->  P  e.  ZZ )
433ad2ant1 1042 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  P  e.  ZZ )
5 simp2 1022 . . . . . . . . . . 11  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  A  e.  ZZ )
6 phiprm 12740 . . . . . . . . . . . . 13  |-  ( P  e.  Prime  ->  ( phi `  P )  =  ( P  -  1 ) )
763ad2ant1 1042 . . . . . . . . . . . 12  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( phi `  P )  =  ( P  -  1 ) )
8 prmnn 12627 . . . . . . . . . . . . . 14  |-  ( P  e.  Prime  ->  P  e.  NN )
983ad2ant1 1042 . . . . . . . . . . . . 13  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  P  e.  NN )
10 nnm1nn0 9406 . . . . . . . . . . . . 13  |-  ( P  e.  NN  ->  ( P  -  1 )  e.  NN0 )
119, 10syl 14 . . . . . . . . . . . 12  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( P  -  1 )  e.  NN0 )
127, 11eqeltrd 2306 . . . . . . . . . . 11  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( phi `  P )  e. 
NN0 )
13 zexpcl 10771 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  ( phi `  P )  e.  NN0 )  -> 
( A ^ ( phi `  P ) )  e.  ZZ )
145, 12, 13syl2anc 411 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( A ^ ( phi `  P ) )  e.  ZZ )
15 1z 9468 . . . . . . . . . 10  |-  1  e.  ZZ
16 zsubcl 9483 . . . . . . . . . 10  |-  ( ( ( A ^ ( phi `  P ) )  e.  ZZ  /\  1  e.  ZZ )  ->  (
( A ^ ( phi `  P ) )  -  1 )  e.  ZZ )
1714, 15, 16sylancl 413 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  (
( A ^ ( phi `  P ) )  -  1 )  e.  ZZ )
18 prmuz2 12648 . . . . . . . . . . . . . . . 16  |-  ( P  e.  Prime  ->  P  e.  ( ZZ>= `  2 )
)
19183ad2ant1 1042 . . . . . . . . . . . . . . 15  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  P  e.  ( ZZ>= `  2 )
)
20 uznn0sub 9750 . . . . . . . . . . . . . . 15  |-  ( P  e.  ( ZZ>= `  2
)  ->  ( P  -  2 )  e. 
NN0 )
2119, 20syl 14 . . . . . . . . . . . . . 14  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( P  -  2 )  e.  NN0 )
22 zexpcl 10771 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ZZ  /\  ( P  -  2
)  e.  NN0 )  ->  ( A ^ ( P  -  2 ) )  e.  ZZ )
235, 21, 22syl2anc 411 . . . . . . . . . . . . 13  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( A ^ ( P  - 
2 ) )  e.  ZZ )
24 znq 9815 . . . . . . . . . . . . 13  |-  ( ( ( A ^ ( P  -  2 ) )  e.  ZZ  /\  P  e.  NN )  ->  ( ( A ^
( P  -  2 ) )  /  P
)  e.  QQ )
2523, 9, 24syl2anc 411 . . . . . . . . . . . 12  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  (
( A ^ ( P  -  2 ) )  /  P )  e.  QQ )
2625flqcld 10492 . . . . . . . . . . 11  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( |_ `  ( ( A ^ ( P  - 
2 ) )  /  P ) )  e.  ZZ )
275, 26zmulcld 9571 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( A  x.  ( |_ `  ( ( A ^
( P  -  2 ) )  /  P
) ) )  e.  ZZ )
284, 27zmulcld 9571 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( P  x.  ( A  x.  ( |_ `  (
( A ^ ( P  -  2 ) )  /  P ) ) ) )  e.  ZZ )
295, 4gcdcomd 12490 . . . . . . . . . . . 12  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( A  gcd  P )  =  ( P  gcd  A
) )
30 coprm 12661 . . . . . . . . . . . . 13  |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  ( -.  P  ||  A  <->  ( P  gcd  A )  =  1 ) )
3130biimp3a 1379 . . . . . . . . . . . 12  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( P  gcd  A )  =  1 )
3229, 31eqtrd 2262 . . . . . . . . . . 11  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( A  gcd  P )  =  1 )
33 eulerth 12750 . . . . . . . . . . 11  |-  ( ( P  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  P )  =  1 )  ->  (
( A ^ ( phi `  P ) )  mod  P )  =  ( 1  mod  P
) )
349, 5, 32, 33syl3anc 1271 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  (
( A ^ ( phi `  P ) )  mod  P )  =  ( 1  mod  P
) )
35 1zzd 9469 . . . . . . . . . . 11  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  1  e.  ZZ )
36 moddvds 12305 . . . . . . . . . . 11  |-  ( ( P  e.  NN  /\  ( A ^ ( phi `  P ) )  e.  ZZ  /\  1  e.  ZZ )  ->  (
( ( A ^
( phi `  P
) )  mod  P
)  =  ( 1  mod  P )  <->  P  ||  (
( A ^ ( phi `  P ) )  -  1 ) ) )
379, 14, 35, 36syl3anc 1271 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  (
( ( A ^
( phi `  P
) )  mod  P
)  =  ( 1  mod  P )  <->  P  ||  (
( A ^ ( phi `  P ) )  -  1 ) ) )
3834, 37mpbid 147 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  P  ||  ( ( A ^
( phi `  P
) )  -  1 ) )
39 dvdsmul1 12319 . . . . . . . . . 10  |-  ( ( P  e.  ZZ  /\  ( A  x.  ( |_ `  ( ( A ^ ( P  - 
2 ) )  /  P ) ) )  e.  ZZ )  ->  P  ||  ( P  x.  ( A  x.  ( |_ `  ( ( A ^ ( P  - 
2 ) )  /  P ) ) ) ) )
404, 27, 39syl2anc 411 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  P  ||  ( P  x.  ( A  x.  ( |_ `  ( ( A ^
( P  -  2 ) )  /  P
) ) ) ) )
414, 17, 28, 38, 40dvds2subd 12333 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  P  ||  ( ( ( A ^ ( phi `  P ) )  - 
1 )  -  ( P  x.  ( A  x.  ( |_ `  (
( A ^ ( P  -  2 ) )  /  P ) ) ) ) ) )
425zcnd 9566 . . . . . . . . . . . 12  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  A  e.  CC )
4323zcnd 9566 . . . . . . . . . . . 12  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( A ^ ( P  - 
2 ) )  e.  CC )
444, 26zmulcld 9571 . . . . . . . . . . . . 13  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( P  x.  ( |_ `  ( ( A ^
( P  -  2 ) )  /  P
) ) )  e.  ZZ )
4544zcnd 9566 . . . . . . . . . . . 12  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( P  x.  ( |_ `  ( ( A ^
( P  -  2 ) )  /  P
) ) )  e.  CC )
4642, 43, 45subdid 8556 . . . . . . . . . . 11  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( A  x.  ( ( A ^ ( P  - 
2 ) )  -  ( P  x.  ( |_ `  ( ( A ^ ( P  - 
2 ) )  /  P ) ) ) ) )  =  ( ( A  x.  ( A ^ ( P  - 
2 ) ) )  -  ( A  x.  ( P  x.  ( |_ `  ( ( A ^ ( P  - 
2 ) )  /  P ) ) ) ) ) )
47 prmdiv.1 . . . . . . . . . . . . 13  |-  R  =  ( ( A ^
( P  -  2 ) )  mod  P
)
48 zq 9817 . . . . . . . . . . . . . . 15  |-  ( ( A ^ ( P  -  2 ) )  e.  ZZ  ->  ( A ^ ( P  - 
2 ) )  e.  QQ )
4923, 48syl 14 . . . . . . . . . . . . . 14  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( A ^ ( P  - 
2 ) )  e.  QQ )
50 nnq 9824 . . . . . . . . . . . . . . 15  |-  ( P  e.  NN  ->  P  e.  QQ )
519, 50syl 14 . . . . . . . . . . . . . 14  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  P  e.  QQ )
529nngt0d 9150 . . . . . . . . . . . . . 14  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  0  <  P )
53 modqval 10541 . . . . . . . . . . . . . 14  |-  ( ( ( A ^ ( P  -  2 ) )  e.  QQ  /\  P  e.  QQ  /\  0  <  P )  ->  (
( A ^ ( P  -  2 ) )  mod  P )  =  ( ( A ^ ( P  - 
2 ) )  -  ( P  x.  ( |_ `  ( ( A ^ ( P  - 
2 ) )  /  P ) ) ) ) )
5449, 51, 52, 53syl3anc 1271 . . . . . . . . . . . . 13  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  (
( A ^ ( P  -  2 ) )  mod  P )  =  ( ( A ^ ( P  - 
2 ) )  -  ( P  x.  ( |_ `  ( ( A ^ ( P  - 
2 ) )  /  P ) ) ) ) )
5547, 54eqtrid 2274 . . . . . . . . . . . 12  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  R  =  ( ( A ^ ( P  - 
2 ) )  -  ( P  x.  ( |_ `  ( ( A ^ ( P  - 
2 ) )  /  P ) ) ) ) )
5655oveq2d 6016 . . . . . . . . . . 11  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( A  x.  R )  =  ( A  x.  ( ( A ^
( P  -  2 ) )  -  ( P  x.  ( |_ `  ( ( A ^
( P  -  2 ) )  /  P
) ) ) ) ) )
57 2m1e1 9224 . . . . . . . . . . . . . . . . 17  |-  ( 2  -  1 )  =  1
5857oveq2i 6011 . . . . . . . . . . . . . . . 16  |-  ( P  -  ( 2  -  1 ) )  =  ( P  -  1 )
597, 58eqtr4di 2280 . . . . . . . . . . . . . . 15  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( phi `  P )  =  ( P  -  (
2  -  1 ) ) )
609nncnd 9120 . . . . . . . . . . . . . . . 16  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  P  e.  CC )
61 2cnd 9179 . . . . . . . . . . . . . . . 16  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  2  e.  CC )
62 1cnd 8158 . . . . . . . . . . . . . . . 16  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  1  e.  CC )
6360, 61, 62subsubd 8481 . . . . . . . . . . . . . . 15  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( P  -  ( 2  -  1 ) )  =  ( ( P  -  2 )  +  1 ) )
6459, 63eqtrd 2262 . . . . . . . . . . . . . 14  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( phi `  P )  =  ( ( P  - 
2 )  +  1 ) )
6564oveq2d 6016 . . . . . . . . . . . . 13  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( A ^ ( phi `  P ) )  =  ( A ^ (
( P  -  2 )  +  1 ) ) )
6642, 21expp1d 10891 . . . . . . . . . . . . 13  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( A ^ ( ( P  -  2 )  +  1 ) )  =  ( ( A ^
( P  -  2 ) )  x.  A
) )
6743, 42mulcomd 8164 . . . . . . . . . . . . 13  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  (
( A ^ ( P  -  2 ) )  x.  A )  =  ( A  x.  ( A ^ ( P  -  2 ) ) ) )
6865, 66, 673eqtrd 2266 . . . . . . . . . . . 12  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( A ^ ( phi `  P ) )  =  ( A  x.  ( A ^ ( P  - 
2 ) ) ) )
6926zcnd 9566 . . . . . . . . . . . . 13  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( |_ `  ( ( A ^ ( P  - 
2 ) )  /  P ) )  e.  CC )
7060, 42, 69mul12d 8294 . . . . . . . . . . . 12  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( P  x.  ( A  x.  ( |_ `  (
( A ^ ( P  -  2 ) )  /  P ) ) ) )  =  ( A  x.  ( P  x.  ( |_ `  ( ( A ^
( P  -  2 ) )  /  P
) ) ) ) )
7168, 70oveq12d 6018 . . . . . . . . . . 11  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  (
( A ^ ( phi `  P ) )  -  ( P  x.  ( A  x.  ( |_ `  ( ( A ^ ( P  - 
2 ) )  /  P ) ) ) ) )  =  ( ( A  x.  ( A ^ ( P  - 
2 ) ) )  -  ( A  x.  ( P  x.  ( |_ `  ( ( A ^ ( P  - 
2 ) )  /  P ) ) ) ) ) )
7246, 56, 713eqtr4d 2272 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( A  x.  R )  =  ( ( A ^ ( phi `  P ) )  -  ( P  x.  ( A  x.  ( |_ `  ( ( A ^
( P  -  2 ) )  /  P
) ) ) ) ) )
7372oveq1d 6015 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  (
( A  x.  R
)  -  1 )  =  ( ( ( A ^ ( phi `  P ) )  -  ( P  x.  ( A  x.  ( |_ `  ( ( A ^
( P  -  2 ) )  /  P
) ) ) ) )  -  1 ) )
7414zcnd 9566 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( A ^ ( phi `  P ) )  e.  CC )
7528zcnd 9566 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( P  x.  ( A  x.  ( |_ `  (
( A ^ ( P  -  2 ) )  /  P ) ) ) )  e.  CC )
7674, 75, 62sub32d 8485 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  (
( ( A ^
( phi `  P
) )  -  ( P  x.  ( A  x.  ( |_ `  (
( A ^ ( P  -  2 ) )  /  P ) ) ) ) )  -  1 )  =  ( ( ( A ^ ( phi `  P ) )  - 
1 )  -  ( P  x.  ( A  x.  ( |_ `  (
( A ^ ( P  -  2 ) )  /  P ) ) ) ) ) )
7773, 76eqtrd 2262 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  (
( A  x.  R
)  -  1 )  =  ( ( ( A ^ ( phi `  P ) )  - 
1 )  -  ( P  x.  ( A  x.  ( |_ `  (
( A ^ ( P  -  2 ) )  /  P ) ) ) ) ) )
7841, 77breqtrrd 4110 . . . . . . 7  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  P  ||  ( ( A  x.  R )  -  1 ) )
79 oveq2 6008 . . . . . . . . 9  |-  ( R  =  0  ->  ( A  x.  R )  =  ( A  x.  0 ) )
8079oveq1d 6015 . . . . . . . 8  |-  ( R  =  0  ->  (
( A  x.  R
)  -  1 )  =  ( ( A  x.  0 )  - 
1 ) )
8180breq2d 4094 . . . . . . 7  |-  ( R  =  0  ->  ( P  ||  ( ( A  x.  R )  - 
1 )  <->  P  ||  (
( A  x.  0 )  -  1 ) ) )
8278, 81syl5ibcom 155 . . . . . 6  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( R  =  0  ->  P 
||  ( ( A  x.  0 )  - 
1 ) ) )
8342mul01d 8535 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( A  x.  0 )  =  0 )
8483oveq1d 6015 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  (
( A  x.  0 )  -  1 )  =  ( 0  -  1 ) )
85 df-neg 8316 . . . . . . . . 9  |-  -u 1  =  ( 0  -  1 )
8684, 85eqtr4di 2280 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  (
( A  x.  0 )  -  1 )  =  -u 1 )
8786breq2d 4094 . . . . . . 7  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( P  ||  ( ( A  x.  0 )  - 
1 )  <->  P  ||  -u 1
) )
88 dvdsnegb 12314 . . . . . . . 8  |-  ( ( P  e.  ZZ  /\  1  e.  ZZ )  ->  ( P  ||  1  <->  P 
||  -u 1 ) )
894, 15, 88sylancl 413 . . . . . . 7  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( P  ||  1  <->  P  ||  -u 1
) )
9087, 89bitr4d 191 . . . . . 6  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( P  ||  ( ( A  x.  0 )  - 
1 )  <->  P  ||  1
) )
9182, 90sylibd 149 . . . . 5  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( R  =  0  ->  P 
||  1 ) )
922, 91mtod 667 . . . 4  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  -.  R  =  0 )
93 zmodfz 10563 . . . . . . . 8  |-  ( ( ( A ^ ( P  -  2 ) )  e.  ZZ  /\  P  e.  NN )  ->  ( ( A ^
( P  -  2 ) )  mod  P
)  e.  ( 0 ... ( P  - 
1 ) ) )
9423, 9, 93syl2anc 411 . . . . . . 7  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  (
( A ^ ( P  -  2 ) )  mod  P )  e.  ( 0 ... ( P  -  1 ) ) )
9547, 94eqeltrid 2316 . . . . . 6  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  R  e.  ( 0 ... ( P  -  1 ) ) )
96 nn0uz 9753 . . . . . . . 8  |-  NN0  =  ( ZZ>= `  0 )
9711, 96eleqtrdi 2322 . . . . . . 7  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( P  -  1 )  e.  ( ZZ>= `  0
) )
98 elfzp12 10291 . . . . . . 7  |-  ( ( P  -  1 )  e.  ( ZZ>= `  0
)  ->  ( R  e.  ( 0 ... ( P  -  1 ) )  <->  ( R  =  0  \/  R  e.  ( ( 0  +  1 ) ... ( P  -  1 ) ) ) ) )
9997, 98syl 14 . . . . . 6  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( R  e.  ( 0 ... ( P  - 
1 ) )  <->  ( R  =  0  \/  R  e.  ( ( 0  +  1 ) ... ( P  -  1 ) ) ) ) )
10095, 99mpbid 147 . . . . 5  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( R  =  0  \/  R  e.  ( (
0  +  1 ) ... ( P  - 
1 ) ) ) )
101100ord 729 . . . 4  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( -.  R  =  0  ->  R  e.  ( ( 0  +  1 ) ... ( P  - 
1 ) ) ) )
10292, 101mpd 13 . . 3  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  R  e.  ( ( 0  +  1 ) ... ( P  -  1 ) ) )
103 1e0p1 9615 . . . 4  |-  1  =  ( 0  +  1 )
104103oveq1i 6010 . . 3  |-  ( 1 ... ( P  - 
1 ) )  =  ( ( 0  +  1 ) ... ( P  -  1 ) )
105102, 104eleqtrrdi 2323 . 2  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  R  e.  ( 1 ... ( P  -  1 ) ) )
106105, 78jca 306 1  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( R  e.  ( 1 ... ( P  - 
1 ) )  /\  P  ||  ( ( A  x.  R )  - 
1 ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 713    /\ w3a 1002    = wceq 1395    e. wcel 2200   class class class wbr 4082   ` cfv 5317  (class class class)co 6000   0cc0 7995   1c1 7996    + caddc 7998    x. cmul 8000    < clt 8177    - cmin 8313   -ucneg 8314    / cdiv 8815   NNcn 9106   2c2 9157   NN0cn0 9365   ZZcz 9442   ZZ>=cuz 9718   QQcq 9810   ...cfz 10200   |_cfl 10483    mod cmo 10539   ^cexp 10755    || cdvds 12293    gcd cgcd 12469   Primecprime 12624   phicphi 12726
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113  ax-arch 8114  ax-caucvg 8115
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-isom 5326  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-irdg 6514  df-frec 6535  df-1o 6560  df-2o 6561  df-oadd 6564  df-er 6678  df-en 6886  df-dom 6887  df-fin 6888  df-sup 7147  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-div 8816  df-inn 9107  df-2 9165  df-3 9166  df-4 9167  df-n0 9366  df-z 9443  df-uz 9719  df-q 9811  df-rp 9846  df-fz 10201  df-fzo 10335  df-fl 10485  df-mod 10540  df-seqfrec 10665  df-exp 10756  df-ihash 10993  df-cj 11348  df-re 11349  df-im 11350  df-rsqrt 11504  df-abs 11505  df-clim 11785  df-proddc 12057  df-dvds 12294  df-gcd 12470  df-prm 12625  df-phi 12728
This theorem is referenced by:  prmdiveq  12753  prmdivdiv  12754  modprminv  12767
  Copyright terms: Public domain W3C validator