ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prmdiv Unicode version

Theorem prmdiv 12218
Description: Show an explicit expression for the modular inverse of  A  mod  P. (Contributed by Mario Carneiro, 24-Jan-2015.)
Hypothesis
Ref Expression
prmdiv.1  |-  R  =  ( ( A ^
( P  -  2 ) )  mod  P
)
Assertion
Ref Expression
prmdiv  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( R  e.  ( 1 ... ( P  - 
1 ) )  /\  P  ||  ( ( A  x.  R )  - 
1 ) ) )

Proof of Theorem prmdiv
StepHypRef Expression
1 nprmdvds1 12123 . . . . . 6  |-  ( P  e.  Prime  ->  -.  P  ||  1 )
213ad2ant1 1018 . . . . 5  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  -.  P  ||  1 )
3 prmz 12094 . . . . . . . . . 10  |-  ( P  e.  Prime  ->  P  e.  ZZ )
433ad2ant1 1018 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  P  e.  ZZ )
5 simp2 998 . . . . . . . . . . 11  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  A  e.  ZZ )
6 phiprm 12206 . . . . . . . . . . . . 13  |-  ( P  e.  Prime  ->  ( phi `  P )  =  ( P  -  1 ) )
763ad2ant1 1018 . . . . . . . . . . . 12  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( phi `  P )  =  ( P  -  1 ) )
8 prmnn 12093 . . . . . . . . . . . . . 14  |-  ( P  e.  Prime  ->  P  e.  NN )
983ad2ant1 1018 . . . . . . . . . . . . 13  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  P  e.  NN )
10 nnm1nn0 9206 . . . . . . . . . . . . 13  |-  ( P  e.  NN  ->  ( P  -  1 )  e.  NN0 )
119, 10syl 14 . . . . . . . . . . . 12  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( P  -  1 )  e.  NN0 )
127, 11eqeltrd 2254 . . . . . . . . . . 11  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( phi `  P )  e. 
NN0 )
13 zexpcl 10521 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  ( phi `  P )  e.  NN0 )  -> 
( A ^ ( phi `  P ) )  e.  ZZ )
145, 12, 13syl2anc 411 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( A ^ ( phi `  P ) )  e.  ZZ )
15 1z 9268 . . . . . . . . . 10  |-  1  e.  ZZ
16 zsubcl 9283 . . . . . . . . . 10  |-  ( ( ( A ^ ( phi `  P ) )  e.  ZZ  /\  1  e.  ZZ )  ->  (
( A ^ ( phi `  P ) )  -  1 )  e.  ZZ )
1714, 15, 16sylancl 413 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  (
( A ^ ( phi `  P ) )  -  1 )  e.  ZZ )
18 prmuz2 12114 . . . . . . . . . . . . . . . 16  |-  ( P  e.  Prime  ->  P  e.  ( ZZ>= `  2 )
)
19183ad2ant1 1018 . . . . . . . . . . . . . . 15  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  P  e.  ( ZZ>= `  2 )
)
20 uznn0sub 9548 . . . . . . . . . . . . . . 15  |-  ( P  e.  ( ZZ>= `  2
)  ->  ( P  -  2 )  e. 
NN0 )
2119, 20syl 14 . . . . . . . . . . . . . 14  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( P  -  2 )  e.  NN0 )
22 zexpcl 10521 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ZZ  /\  ( P  -  2
)  e.  NN0 )  ->  ( A ^ ( P  -  2 ) )  e.  ZZ )
235, 21, 22syl2anc 411 . . . . . . . . . . . . 13  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( A ^ ( P  - 
2 ) )  e.  ZZ )
24 znq 9613 . . . . . . . . . . . . 13  |-  ( ( ( A ^ ( P  -  2 ) )  e.  ZZ  /\  P  e.  NN )  ->  ( ( A ^
( P  -  2 ) )  /  P
)  e.  QQ )
2523, 9, 24syl2anc 411 . . . . . . . . . . . 12  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  (
( A ^ ( P  -  2 ) )  /  P )  e.  QQ )
2625flqcld 10263 . . . . . . . . . . 11  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( |_ `  ( ( A ^ ( P  - 
2 ) )  /  P ) )  e.  ZZ )
275, 26zmulcld 9370 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( A  x.  ( |_ `  ( ( A ^
( P  -  2 ) )  /  P
) ) )  e.  ZZ )
284, 27zmulcld 9370 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( P  x.  ( A  x.  ( |_ `  (
( A ^ ( P  -  2 ) )  /  P ) ) ) )  e.  ZZ )
295, 4gcdcomd 11958 . . . . . . . . . . . 12  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( A  gcd  P )  =  ( P  gcd  A
) )
30 coprm 12127 . . . . . . . . . . . . 13  |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  ( -.  P  ||  A  <->  ( P  gcd  A )  =  1 ) )
3130biimp3a 1345 . . . . . . . . . . . 12  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( P  gcd  A )  =  1 )
3229, 31eqtrd 2210 . . . . . . . . . . 11  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( A  gcd  P )  =  1 )
33 eulerth 12216 . . . . . . . . . . 11  |-  ( ( P  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  P )  =  1 )  ->  (
( A ^ ( phi `  P ) )  mod  P )  =  ( 1  mod  P
) )
349, 5, 32, 33syl3anc 1238 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  (
( A ^ ( phi `  P ) )  mod  P )  =  ( 1  mod  P
) )
35 1zzd 9269 . . . . . . . . . . 11  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  1  e.  ZZ )
36 moddvds 11790 . . . . . . . . . . 11  |-  ( ( P  e.  NN  /\  ( A ^ ( phi `  P ) )  e.  ZZ  /\  1  e.  ZZ )  ->  (
( ( A ^
( phi `  P
) )  mod  P
)  =  ( 1  mod  P )  <->  P  ||  (
( A ^ ( phi `  P ) )  -  1 ) ) )
379, 14, 35, 36syl3anc 1238 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  (
( ( A ^
( phi `  P
) )  mod  P
)  =  ( 1  mod  P )  <->  P  ||  (
( A ^ ( phi `  P ) )  -  1 ) ) )
3834, 37mpbid 147 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  P  ||  ( ( A ^
( phi `  P
) )  -  1 ) )
39 dvdsmul1 11804 . . . . . . . . . 10  |-  ( ( P  e.  ZZ  /\  ( A  x.  ( |_ `  ( ( A ^ ( P  - 
2 ) )  /  P ) ) )  e.  ZZ )  ->  P  ||  ( P  x.  ( A  x.  ( |_ `  ( ( A ^ ( P  - 
2 ) )  /  P ) ) ) ) )
404, 27, 39syl2anc 411 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  P  ||  ( P  x.  ( A  x.  ( |_ `  ( ( A ^
( P  -  2 ) )  /  P
) ) ) ) )
414, 17, 28, 38, 40dvds2subd 11818 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  P  ||  ( ( ( A ^ ( phi `  P ) )  - 
1 )  -  ( P  x.  ( A  x.  ( |_ `  (
( A ^ ( P  -  2 ) )  /  P ) ) ) ) ) )
425zcnd 9365 . . . . . . . . . . . 12  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  A  e.  CC )
4323zcnd 9365 . . . . . . . . . . . 12  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( A ^ ( P  - 
2 ) )  e.  CC )
444, 26zmulcld 9370 . . . . . . . . . . . . 13  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( P  x.  ( |_ `  ( ( A ^
( P  -  2 ) )  /  P
) ) )  e.  ZZ )
4544zcnd 9365 . . . . . . . . . . . 12  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( P  x.  ( |_ `  ( ( A ^
( P  -  2 ) )  /  P
) ) )  e.  CC )
4642, 43, 45subdid 8361 . . . . . . . . . . 11  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( A  x.  ( ( A ^ ( P  - 
2 ) )  -  ( P  x.  ( |_ `  ( ( A ^ ( P  - 
2 ) )  /  P ) ) ) ) )  =  ( ( A  x.  ( A ^ ( P  - 
2 ) ) )  -  ( A  x.  ( P  x.  ( |_ `  ( ( A ^ ( P  - 
2 ) )  /  P ) ) ) ) ) )
47 prmdiv.1 . . . . . . . . . . . . 13  |-  R  =  ( ( A ^
( P  -  2 ) )  mod  P
)
48 zq 9615 . . . . . . . . . . . . . . 15  |-  ( ( A ^ ( P  -  2 ) )  e.  ZZ  ->  ( A ^ ( P  - 
2 ) )  e.  QQ )
4923, 48syl 14 . . . . . . . . . . . . . 14  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( A ^ ( P  - 
2 ) )  e.  QQ )
50 nnq 9622 . . . . . . . . . . . . . . 15  |-  ( P  e.  NN  ->  P  e.  QQ )
519, 50syl 14 . . . . . . . . . . . . . 14  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  P  e.  QQ )
529nngt0d 8952 . . . . . . . . . . . . . 14  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  0  <  P )
53 modqval 10310 . . . . . . . . . . . . . 14  |-  ( ( ( A ^ ( P  -  2 ) )  e.  QQ  /\  P  e.  QQ  /\  0  <  P )  ->  (
( A ^ ( P  -  2 ) )  mod  P )  =  ( ( A ^ ( P  - 
2 ) )  -  ( P  x.  ( |_ `  ( ( A ^ ( P  - 
2 ) )  /  P ) ) ) ) )
5449, 51, 52, 53syl3anc 1238 . . . . . . . . . . . . 13  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  (
( A ^ ( P  -  2 ) )  mod  P )  =  ( ( A ^ ( P  - 
2 ) )  -  ( P  x.  ( |_ `  ( ( A ^ ( P  - 
2 ) )  /  P ) ) ) ) )
5547, 54eqtrid 2222 . . . . . . . . . . . 12  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  R  =  ( ( A ^ ( P  - 
2 ) )  -  ( P  x.  ( |_ `  ( ( A ^ ( P  - 
2 ) )  /  P ) ) ) ) )
5655oveq2d 5885 . . . . . . . . . . 11  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( A  x.  R )  =  ( A  x.  ( ( A ^
( P  -  2 ) )  -  ( P  x.  ( |_ `  ( ( A ^
( P  -  2 ) )  /  P
) ) ) ) ) )
57 2m1e1 9026 . . . . . . . . . . . . . . . . 17  |-  ( 2  -  1 )  =  1
5857oveq2i 5880 . . . . . . . . . . . . . . . 16  |-  ( P  -  ( 2  -  1 ) )  =  ( P  -  1 )
597, 58eqtr4di 2228 . . . . . . . . . . . . . . 15  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( phi `  P )  =  ( P  -  (
2  -  1 ) ) )
609nncnd 8922 . . . . . . . . . . . . . . . 16  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  P  e.  CC )
61 2cnd 8981 . . . . . . . . . . . . . . . 16  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  2  e.  CC )
62 1cnd 7964 . . . . . . . . . . . . . . . 16  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  1  e.  CC )
6360, 61, 62subsubd 8286 . . . . . . . . . . . . . . 15  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( P  -  ( 2  -  1 ) )  =  ( ( P  -  2 )  +  1 ) )
6459, 63eqtrd 2210 . . . . . . . . . . . . . 14  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( phi `  P )  =  ( ( P  - 
2 )  +  1 ) )
6564oveq2d 5885 . . . . . . . . . . . . 13  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( A ^ ( phi `  P ) )  =  ( A ^ (
( P  -  2 )  +  1 ) ) )
6642, 21expp1d 10640 . . . . . . . . . . . . 13  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( A ^ ( ( P  -  2 )  +  1 ) )  =  ( ( A ^
( P  -  2 ) )  x.  A
) )
6743, 42mulcomd 7969 . . . . . . . . . . . . 13  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  (
( A ^ ( P  -  2 ) )  x.  A )  =  ( A  x.  ( A ^ ( P  -  2 ) ) ) )
6865, 66, 673eqtrd 2214 . . . . . . . . . . . 12  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( A ^ ( phi `  P ) )  =  ( A  x.  ( A ^ ( P  - 
2 ) ) ) )
6926zcnd 9365 . . . . . . . . . . . . 13  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( |_ `  ( ( A ^ ( P  - 
2 ) )  /  P ) )  e.  CC )
7060, 42, 69mul12d 8099 . . . . . . . . . . . 12  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( P  x.  ( A  x.  ( |_ `  (
( A ^ ( P  -  2 ) )  /  P ) ) ) )  =  ( A  x.  ( P  x.  ( |_ `  ( ( A ^
( P  -  2 ) )  /  P
) ) ) ) )
7168, 70oveq12d 5887 . . . . . . . . . . 11  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  (
( A ^ ( phi `  P ) )  -  ( P  x.  ( A  x.  ( |_ `  ( ( A ^ ( P  - 
2 ) )  /  P ) ) ) ) )  =  ( ( A  x.  ( A ^ ( P  - 
2 ) ) )  -  ( A  x.  ( P  x.  ( |_ `  ( ( A ^ ( P  - 
2 ) )  /  P ) ) ) ) ) )
7246, 56, 713eqtr4d 2220 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( A  x.  R )  =  ( ( A ^ ( phi `  P ) )  -  ( P  x.  ( A  x.  ( |_ `  ( ( A ^
( P  -  2 ) )  /  P
) ) ) ) ) )
7372oveq1d 5884 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  (
( A  x.  R
)  -  1 )  =  ( ( ( A ^ ( phi `  P ) )  -  ( P  x.  ( A  x.  ( |_ `  ( ( A ^
( P  -  2 ) )  /  P
) ) ) ) )  -  1 ) )
7414zcnd 9365 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( A ^ ( phi `  P ) )  e.  CC )
7528zcnd 9365 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( P  x.  ( A  x.  ( |_ `  (
( A ^ ( P  -  2 ) )  /  P ) ) ) )  e.  CC )
7674, 75, 62sub32d 8290 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  (
( ( A ^
( phi `  P
) )  -  ( P  x.  ( A  x.  ( |_ `  (
( A ^ ( P  -  2 ) )  /  P ) ) ) ) )  -  1 )  =  ( ( ( A ^ ( phi `  P ) )  - 
1 )  -  ( P  x.  ( A  x.  ( |_ `  (
( A ^ ( P  -  2 ) )  /  P ) ) ) ) ) )
7773, 76eqtrd 2210 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  (
( A  x.  R
)  -  1 )  =  ( ( ( A ^ ( phi `  P ) )  - 
1 )  -  ( P  x.  ( A  x.  ( |_ `  (
( A ^ ( P  -  2 ) )  /  P ) ) ) ) ) )
7841, 77breqtrrd 4028 . . . . . . 7  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  P  ||  ( ( A  x.  R )  -  1 ) )
79 oveq2 5877 . . . . . . . . 9  |-  ( R  =  0  ->  ( A  x.  R )  =  ( A  x.  0 ) )
8079oveq1d 5884 . . . . . . . 8  |-  ( R  =  0  ->  (
( A  x.  R
)  -  1 )  =  ( ( A  x.  0 )  - 
1 ) )
8180breq2d 4012 . . . . . . 7  |-  ( R  =  0  ->  ( P  ||  ( ( A  x.  R )  - 
1 )  <->  P  ||  (
( A  x.  0 )  -  1 ) ) )
8278, 81syl5ibcom 155 . . . . . 6  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( R  =  0  ->  P 
||  ( ( A  x.  0 )  - 
1 ) ) )
8342mul01d 8340 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( A  x.  0 )  =  0 )
8483oveq1d 5884 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  (
( A  x.  0 )  -  1 )  =  ( 0  -  1 ) )
85 df-neg 8121 . . . . . . . . 9  |-  -u 1  =  ( 0  -  1 )
8684, 85eqtr4di 2228 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  (
( A  x.  0 )  -  1 )  =  -u 1 )
8786breq2d 4012 . . . . . . 7  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( P  ||  ( ( A  x.  0 )  - 
1 )  <->  P  ||  -u 1
) )
88 dvdsnegb 11799 . . . . . . . 8  |-  ( ( P  e.  ZZ  /\  1  e.  ZZ )  ->  ( P  ||  1  <->  P 
||  -u 1 ) )
894, 15, 88sylancl 413 . . . . . . 7  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( P  ||  1  <->  P  ||  -u 1
) )
9087, 89bitr4d 191 . . . . . 6  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( P  ||  ( ( A  x.  0 )  - 
1 )  <->  P  ||  1
) )
9182, 90sylibd 149 . . . . 5  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( R  =  0  ->  P 
||  1 ) )
922, 91mtod 663 . . . 4  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  -.  R  =  0 )
93 zmodfz 10332 . . . . . . . 8  |-  ( ( ( A ^ ( P  -  2 ) )  e.  ZZ  /\  P  e.  NN )  ->  ( ( A ^
( P  -  2 ) )  mod  P
)  e.  ( 0 ... ( P  - 
1 ) ) )
9423, 9, 93syl2anc 411 . . . . . . 7  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  (
( A ^ ( P  -  2 ) )  mod  P )  e.  ( 0 ... ( P  -  1 ) ) )
9547, 94eqeltrid 2264 . . . . . 6  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  R  e.  ( 0 ... ( P  -  1 ) ) )
96 nn0uz 9551 . . . . . . . 8  |-  NN0  =  ( ZZ>= `  0 )
9711, 96eleqtrdi 2270 . . . . . . 7  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( P  -  1 )  e.  ( ZZ>= `  0
) )
98 elfzp12 10085 . . . . . . 7  |-  ( ( P  -  1 )  e.  ( ZZ>= `  0
)  ->  ( R  e.  ( 0 ... ( P  -  1 ) )  <->  ( R  =  0  \/  R  e.  ( ( 0  +  1 ) ... ( P  -  1 ) ) ) ) )
9997, 98syl 14 . . . . . 6  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( R  e.  ( 0 ... ( P  - 
1 ) )  <->  ( R  =  0  \/  R  e.  ( ( 0  +  1 ) ... ( P  -  1 ) ) ) ) )
10095, 99mpbid 147 . . . . 5  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( R  =  0  \/  R  e.  ( (
0  +  1 ) ... ( P  - 
1 ) ) ) )
101100ord 724 . . . 4  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( -.  R  =  0  ->  R  e.  ( ( 0  +  1 ) ... ( P  - 
1 ) ) ) )
10292, 101mpd 13 . . 3  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  R  e.  ( ( 0  +  1 ) ... ( P  -  1 ) ) )
103 1e0p1 9414 . . . 4  |-  1  =  ( 0  +  1 )
104103oveq1i 5879 . . 3  |-  ( 1 ... ( P  - 
1 ) )  =  ( ( 0  +  1 ) ... ( P  -  1 ) )
105102, 104eleqtrrdi 2271 . 2  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  R  e.  ( 1 ... ( P  -  1 ) ) )
106105, 78jca 306 1  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( R  e.  ( 1 ... ( P  - 
1 ) )  /\  P  ||  ( ( A  x.  R )  - 
1 ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 708    /\ w3a 978    = wceq 1353    e. wcel 2148   class class class wbr 4000   ` cfv 5212  (class class class)co 5869   0cc0 7802   1c1 7803    + caddc 7805    x. cmul 7807    < clt 7982    - cmin 8118   -ucneg 8119    / cdiv 8618   NNcn 8908   2c2 8959   NN0cn0 9165   ZZcz 9242   ZZ>=cuz 9517   QQcq 9608   ...cfz 9995   |_cfl 10254    mod cmo 10308   ^cexp 10505    || cdvds 11778    gcd cgcd 11926   Primecprime 12090   phicphi 12192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921  ax-caucvg 7922
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-isom 5221  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-irdg 6365  df-frec 6386  df-1o 6411  df-2o 6412  df-oadd 6415  df-er 6529  df-en 6735  df-dom 6736  df-fin 6737  df-sup 6977  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-3 8968  df-4 8969  df-n0 9166  df-z 9243  df-uz 9518  df-q 9609  df-rp 9641  df-fz 9996  df-fzo 10129  df-fl 10256  df-mod 10309  df-seqfrec 10432  df-exp 10506  df-ihash 10740  df-cj 10835  df-re 10836  df-im 10837  df-rsqrt 10991  df-abs 10992  df-clim 11271  df-proddc 11543  df-dvds 11779  df-gcd 11927  df-prm 12091  df-phi 12194
This theorem is referenced by:  prmdiveq  12219  prmdivdiv  12220  modprminv  12232
  Copyright terms: Public domain W3C validator