Home Intuitionistic Logic ExplorerTheorem List (p. 95 of 135) < Previous  Next > Browser slow? Try the Unicode version. Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 9401-9500   *Has distinct variable group(s)
TypeLabelDescription
Statement

Theoremrexuz 9401* Restricted existential quantification in an upper set of integers. (Contributed by NM, 9-Sep-2005.)

Theoremrexuz2 9402* Restricted existential quantification in an upper set of integers. (Contributed by NM, 9-Sep-2005.)

Theorem2rexuz 9403* Double existential quantification in an upper set of integers. (Contributed by NM, 3-Nov-2005.)

Theorempeano2uz 9404 Second Peano postulate for an upper set of integers. (Contributed by NM, 7-Sep-2005.)

Theorempeano2uzs 9405 Second Peano postulate for an upper set of integers. (Contributed by Mario Carneiro, 26-Dec-2013.)

Theorempeano2uzr 9406 Reversed second Peano axiom for upper integers. (Contributed by NM, 2-Jan-2006.)

Theoremuzaddcl 9407 Addition closure law for an upper set of integers. (Contributed by NM, 4-Jun-2006.)

Theoremnn0pzuz 9408 The sum of a nonnegative integer and an integer is an integer greater than or equal to that integer. (Contributed by Alexander van der Vekens, 3-Oct-2018.)

Theoremuzind4 9409* Induction on the upper set of integers that starts at an integer . The first four hypotheses give us the substitution instances we need, and the last two are the basis and the induction step. (Contributed by NM, 7-Sep-2005.)

Theoremuzind4ALT 9410* Induction on the upper set of integers that starts at an integer . The last four hypotheses give us the substitution instances we need; the first two are the basis and the induction step. Either uzind4 9409 or uzind4ALT 9410 may be used; see comment for nnind 8759. (Contributed by NM, 7-Sep-2005.) (New usage is discouraged.) (Proof modification is discouraged.)

Theoremuzind4s 9411* Induction on the upper set of integers that starts at an integer , using explicit substitution. The hypotheses are the basis and the induction step. (Contributed by NM, 4-Nov-2005.)

Theoremuzind4s2 9412* Induction on the upper set of integers that starts at an integer , using explicit substitution. The hypotheses are the basis and the induction step. Use this instead of uzind4s 9411 when and must be distinct in . (Contributed by NM, 16-Nov-2005.)

Theoremuzind4i 9413* Induction on the upper integers that start at . The first four give us the substitution instances we need, and the last two are the basis and the induction step. This is a stronger version of uzind4 9409 assuming that holds unconditionally. Notice that implies that the lower bound is an integer ( , see eluzel2 9354). (Contributed by NM, 4-Sep-2005.) (Revised by AV, 13-Jul-2022.)

Theoremindstr 9414* Strong Mathematical Induction for positive integers (inference schema). (Contributed by NM, 17-Aug-2001.)

Theoreminfrenegsupex 9415* The infimum of a set of reals is the negative of the supremum of the negatives of its elements. (Contributed by Jim Kingdon, 14-Jan-2022.)
inf

Theoremsupinfneg 9416* If a set of real numbers has a least upper bound, the set of the negation of those numbers has a greatest lower bound. For a theorem which is similar but only for the boundedness part, see ublbneg 9431. (Contributed by Jim Kingdon, 15-Jan-2022.)

Theoreminfsupneg 9417* If a set of real numbers has a greatest lower bound, the set of the negation of those numbers has a least upper bound. To go in the other direction see supinfneg 9416. (Contributed by Jim Kingdon, 15-Jan-2022.)

Theoremsupminfex 9418* A supremum is the negation of the infimum of that set's image under negation. (Contributed by Jim Kingdon, 14-Jan-2022.)
inf

Theoremeluznn0 9419 Membership in a nonnegative upper set of integers implies membership in . (Contributed by Paul Chapman, 22-Jun-2011.)

Theoremeluznn 9420 Membership in a positive upper set of integers implies membership in . (Contributed by JJ, 1-Oct-2018.)

Theoremeluz2b1 9421 Two ways to say "an integer greater than or equal to 2." (Contributed by Paul Chapman, 23-Nov-2012.)

Theoremeluz2gt1 9422 An integer greater than or equal to 2 is greater than 1. (Contributed by AV, 24-May-2020.)

Theoremeluz2b2 9423 Two ways to say "an integer greater than or equal to 2." (Contributed by Paul Chapman, 23-Nov-2012.)

Theoremeluz2b3 9424 Two ways to say "an integer greater than or equal to 2." (Contributed by Paul Chapman, 23-Nov-2012.)

Theoremuz2m1nn 9425 One less than an integer greater than or equal to 2 is a positive integer. (Contributed by Paul Chapman, 17-Nov-2012.)

Theorem1nuz2 9426 1 is not in . (Contributed by Paul Chapman, 21-Nov-2012.)

Theoremelnn1uz2 9427 A positive integer is either 1 or greater than or equal to 2. (Contributed by Paul Chapman, 17-Nov-2012.)

Theoremuz2mulcl 9428 Closure of multiplication of integers greater than or equal to 2. (Contributed by Paul Chapman, 26-Oct-2012.)

Theoremindstr2 9429* Strong Mathematical Induction for positive integers (inference schema). The first two hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by Paul Chapman, 21-Nov-2012.)

Theoremeluzdc 9430 Membership of an integer in an upper set of integers is decidable. (Contributed by Jim Kingdon, 18-Apr-2020.)
DECID

Theoremublbneg 9431* The image under negation of a bounded-above set of reals is bounded below. For a theorem which is similar but also adds that the bounds need to be the tightest possible, see supinfneg 9416. (Contributed by Paul Chapman, 21-Mar-2011.)

Theoremeqreznegel 9432* Two ways to express the image under negation of a set of integers. (Contributed by Paul Chapman, 21-Mar-2011.)

Theoremnegm 9433* The image under negation of an inhabited set of reals is inhabited. (Contributed by Jim Kingdon, 10-Apr-2020.)

Theoremlbzbi 9434* If a set of reals is bounded below, it is bounded below by an integer. (Contributed by Paul Chapman, 21-Mar-2011.)

Theoremnn01to3 9435 A (nonnegative) integer between 1 and 3 must be 1, 2 or 3. (Contributed by Alexander van der Vekens, 13-Sep-2018.)

Theoremnn0ge2m1nnALT 9436 Alternate proof of nn0ge2m1nn 9060: If a nonnegative integer is greater than or equal to two, the integer decreased by 1 is a positive integer. This version is proved using eluz2 9355, a theorem for upper sets of integers, which are defined later than the positive and nonnegative integers. This proof is, however, much shorter than the proof of nn0ge2m1nn 9060. (Contributed by Alexander van der Vekens, 1-Aug-2018.) (New usage is discouraged.) (Proof modification is discouraged.)

4.4.12  Rational numbers (as a subset of complex numbers)

Syntaxcq 9437 Extend class notation to include the class of rationals.

Definitiondf-q 9438 Define the set of rational numbers. Based on definition of rationals in [Apostol] p. 22. See elq 9440 for the relation "is rational." (Contributed by NM, 8-Jan-2002.)

Theoremdivfnzn 9439 Division restricted to is a function. Given excluded middle, it would be easy to prove this for . The key difference is that an element of is apart from zero, whereas being an element of implies being not equal to zero. (Contributed by Jim Kingdon, 19-Mar-2020.)

Theoremelq 9440* Membership in the set of rationals. (Contributed by NM, 8-Jan-2002.) (Revised by Mario Carneiro, 28-Jan-2014.)

Theoremqmulz 9441* If is rational, then some integer multiple of it is an integer. (Contributed by NM, 7-Nov-2008.) (Revised by Mario Carneiro, 22-Jul-2014.)

Theoremznq 9442 The ratio of an integer and a positive integer is a rational number. (Contributed by NM, 12-Jan-2002.)

Theoremqre 9443 A rational number is a real number. (Contributed by NM, 14-Nov-2002.)

Theoremzq 9444 An integer is a rational number. (Contributed by NM, 9-Jan-2002.)

Theoremzssq 9445 The integers are a subset of the rationals. (Contributed by NM, 9-Jan-2002.)

Theoremnn0ssq 9446 The nonnegative integers are a subset of the rationals. (Contributed by NM, 31-Jul-2004.)

Theoremnnssq 9447 The positive integers are a subset of the rationals. (Contributed by NM, 31-Jul-2004.)

Theoremqssre 9448 The rationals are a subset of the reals. (Contributed by NM, 9-Jan-2002.)

Theoremqsscn 9449 The rationals are a subset of the complex numbers. (Contributed by NM, 2-Aug-2004.)

Theoremqex 9450 The set of rational numbers exists. (Contributed by NM, 30-Jul-2004.) (Revised by Mario Carneiro, 17-Nov-2014.)

Theoremnnq 9451 A positive integer is rational. (Contributed by NM, 17-Nov-2004.)

Theoremqcn 9452 A rational number is a complex number. (Contributed by NM, 2-Aug-2004.)

Theoremqaddcl 9453 Closure of addition of rationals. (Contributed by NM, 1-Aug-2004.)

Theoremqnegcl 9454 Closure law for the negative of a rational. (Contributed by NM, 2-Aug-2004.) (Revised by Mario Carneiro, 15-Sep-2014.)

Theoremqmulcl 9455 Closure of multiplication of rationals. (Contributed by NM, 1-Aug-2004.)

Theoremqsubcl 9456 Closure of subtraction of rationals. (Contributed by NM, 2-Aug-2004.)

Theoremqapne 9457 Apartness is equivalent to not equal for rationals. (Contributed by Jim Kingdon, 20-Mar-2020.)
#

Theoremqltlen 9458 Rational 'Less than' expressed in terms of 'less than or equal to'. Also see ltleap 8417 which is a similar result for real numbers. (Contributed by Jim Kingdon, 11-Oct-2021.)

Theoremqlttri2 9459 Apartness is equivalent to not equal for rationals. (Contributed by Jim Kingdon, 9-Nov-2021.)

Theoremqreccl 9460 Closure of reciprocal of rationals. (Contributed by NM, 3-Aug-2004.)

Theoremqdivcl 9461 Closure of division of rationals. (Contributed by NM, 3-Aug-2004.)

Theoremqrevaddcl 9462 Reverse closure law for addition of rationals. (Contributed by NM, 2-Aug-2004.)

Theoremnnrecq 9463 The reciprocal of a positive integer is rational. (Contributed by NM, 17-Nov-2004.)

Theoremirradd 9464 The sum of an irrational number and a rational number is irrational. (Contributed by NM, 7-Nov-2008.)

Theoremirrmul 9465 The product of a real which is not rational with a nonzero rational is not rational. Note that by "not rational" we mean the negation of "is rational" (whereas "irrational" is often defined to mean apart from any rational number - given excluded middle these two definitions would be equivalent). (Contributed by NM, 7-Nov-2008.)

Theoremelpq 9466* A positive rational is the quotient of two positive integers. (Contributed by AV, 29-Dec-2022.)

Theoremelpqb 9467* A class is a positive rational iff it is the quotient of two positive integers. (Contributed by AV, 30-Dec-2022.)

4.4.13  Complex numbers as pairs of reals

Theoremcnref1o 9468* There is a natural one-to-one mapping from to , where we map to . In our construction of the complex numbers, this is in fact our definition of (see df-c 7649), but in the axiomatic treatment we can only show that there is the expected mapping between these two sets. (Contributed by Mario Carneiro, 16-Jun-2013.) (Revised by Mario Carneiro, 17-Feb-2014.)

4.5  Order sets

4.5.1  Positive reals (as a subset of complex numbers)

Syntaxcrp 9469 Extend class notation to include the class of positive reals.

Definitiondf-rp 9470 Define the set of positive reals. Definition of positive numbers in [Apostol] p. 20. (Contributed by NM, 27-Oct-2007.)

Theoremelrp 9471 Membership in the set of positive reals. (Contributed by NM, 27-Oct-2007.)

Theoremelrpii 9472 Membership in the set of positive reals. (Contributed by NM, 23-Feb-2008.)

Theorem1rp 9473 1 is a positive real. (Contributed by Jeff Hankins, 23-Nov-2008.)

Theorem2rp 9474 2 is a positive real. (Contributed by Mario Carneiro, 28-May-2016.)

Theorem3rp 9475 3 is a positive real. (Contributed by Glauco Siliprandi, 11-Dec-2019.)

Theoremrpre 9476 A positive real is a real. (Contributed by NM, 27-Oct-2007.)

Theoremrpxr 9477 A positive real is an extended real. (Contributed by Mario Carneiro, 21-Aug-2015.)

Theoremrpcn 9478 A positive real is a complex number. (Contributed by NM, 11-Nov-2008.)

Theoremnnrp 9479 A positive integer is a positive real. (Contributed by NM, 28-Nov-2008.)

Theoremrpssre 9480 The positive reals are a subset of the reals. (Contributed by NM, 24-Feb-2008.)

Theoremrpgt0 9481 A positive real is greater than zero. (Contributed by FL, 27-Dec-2007.)

Theoremrpge0 9482 A positive real is greater than or equal to zero. (Contributed by NM, 22-Feb-2008.)

Theoremrpregt0 9483 A positive real is a positive real number. (Contributed by NM, 11-Nov-2008.) (Revised by Mario Carneiro, 31-Jan-2014.)

Theoremrprege0 9484 A positive real is a nonnegative real number. (Contributed by Mario Carneiro, 31-Jan-2014.)

Theoremrpne0 9485 A positive real is nonzero. (Contributed by NM, 18-Jul-2008.)

Theoremrpap0 9486 A positive real is apart from zero. (Contributed by Jim Kingdon, 22-Mar-2020.)
#

Theoremrprene0 9487 A positive real is a nonzero real number. (Contributed by NM, 11-Nov-2008.)

Theoremrpreap0 9488 A positive real is a real number apart from zero. (Contributed by Jim Kingdon, 22-Mar-2020.)
#

Theoremrpcnne0 9489 A positive real is a nonzero complex number. (Contributed by NM, 11-Nov-2008.)

Theoremrpcnap0 9490 A positive real is a complex number apart from zero. (Contributed by Jim Kingdon, 22-Mar-2020.)
#

Theoremralrp 9491 Quantification over positive reals. (Contributed by NM, 12-Feb-2008.)

Theoremrexrp 9492 Quantification over positive reals. (Contributed by Mario Carneiro, 21-May-2014.)

Theoremrpaddcl 9493 Closure law for addition of positive reals. Part of Axiom 7 of [Apostol] p. 20. (Contributed by NM, 27-Oct-2007.)

Theoremrpmulcl 9494 Closure law for multiplication of positive reals. Part of Axiom 7 of [Apostol] p. 20. (Contributed by NM, 27-Oct-2007.)

Theoremrpdivcl 9495 Closure law for division of positive reals. (Contributed by FL, 27-Dec-2007.)

Theoremrpreccl 9496 Closure law for reciprocation of positive reals. (Contributed by Jeff Hankins, 23-Nov-2008.)

Theoremrphalfcl 9497 Closure law for half of a positive real. (Contributed by Mario Carneiro, 31-Jan-2014.)

Theoremrpgecl 9498 A number greater or equal to a positive real is positive real. (Contributed by Mario Carneiro, 28-May-2016.)

Theoremrphalflt 9499 Half of a positive real is less than the original number. (Contributed by Mario Carneiro, 21-May-2014.)

Theoremrerpdivcl 9500 Closure law for division of a real by a positive real. (Contributed by NM, 10-Nov-2008.)

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13439
 Copyright terms: Public domain < Previous  Next >