Theorem List for Intuitionistic Logic Explorer - 9401-9500   *Has distinct variable
 group(s)
| Type | Label | Description | 
| Statement | 
|   | 
| Theorem | zdceq 9401 | 
Equality of integers is decidable.  (Contributed by Jim Kingdon,
     14-Mar-2020.)
 | 
                     DECID    
    | 
|   | 
| Theorem | zdcle 9402 | 
Integer   is
decidable.  (Contributed by Jim Kingdon, 7-Apr-2020.)
 | 
                     DECID        | 
|   | 
| Theorem | zdclt 9403 | 
Integer   is
decidable.  (Contributed by Jim Kingdon, 1-Jun-2020.)
 | 
                     DECID        | 
|   | 
| Theorem | zltlen 9404 | 
Integer 'Less than' expressed in terms of 'less than or equal to'.  Also
     see ltleap 8659 which is a similar result for real numbers. 
(Contributed by
     Jim Kingdon, 14-Mar-2020.)
 | 
                                                | 
|   | 
| Theorem | nn0n0n1ge2b 9405 | 
A nonnegative integer is neither 0 nor 1 if and only if it is greater than
     or equal to 2.  (Contributed by Alexander van der Vekens, 17-Jan-2018.)
 | 
                                 
     | 
|   | 
| Theorem | nn0lt10b 9406 | 
A nonnegative integer less than   is  . 
(Contributed by Paul
     Chapman, 22-Jun-2011.)
 | 
             
        
       | 
|   | 
| Theorem | nn0lt2 9407 | 
A nonnegative integer less than 2 must be 0 or 1.  (Contributed by
     Alexander van der Vekens, 16-Sep-2018.)
 | 
                                      | 
|   | 
| Theorem | nn0le2is012 9408 | 
A nonnegative integer which is less than or equal to 2 is either 0 or 1 or
     2.  (Contributed by AV, 16-Mar-2019.)
 | 
               
                               | 
|   | 
| Theorem | nn0lem1lt 9409 | 
Nonnegative integer ordering relation.  (Contributed by NM,
     21-Jun-2005.)
 | 
                                            | 
|   | 
| Theorem | nnlem1lt 9410 | 
Positive integer ordering relation.  (Contributed by NM, 21-Jun-2005.)
 | 
                                       
     | 
|   | 
| Theorem | nnltlem1 9411 | 
Positive integer ordering relation.  (Contributed by NM, 21-Jun-2005.)
 | 
                                            | 
|   | 
| Theorem | nnm1ge0 9412 | 
A positive integer decreased by 1 is greater than or equal to 0.
     (Contributed by AV, 30-Oct-2018.)
 | 
              
          | 
|   | 
| Theorem | nn0ge0div 9413 | 
Division of a nonnegative integer by a positive number is not negative.
     (Contributed by Alexander van der Vekens, 14-Apr-2018.)
 | 
                        
          | 
|   | 
| Theorem | zdiv 9414* | 
Two ways to express "  divides  . 
(Contributed by NM,
       3-Oct-2008.)
 | 
                                    
                     | 
|   | 
| Theorem | zdivadd 9415 | 
Property of divisibility: if   divides  
and   then it divides
          .  (Contributed by NM, 3-Oct-2008.)
 | 
                           
                                          
           | 
|   | 
| Theorem | zdivmul 9416 | 
Property of divisibility: if   divides  
then it divides
          .  (Contributed by NM, 3-Oct-2008.)
 | 
                           
                                     | 
|   | 
| Theorem | zextle 9417* | 
An extensionality-like property for integer ordering.  (Contributed by
       NM, 29-Oct-2005.)
 | 
                             
        
        
        | 
|   | 
| Theorem | zextlt 9418* | 
An extensionality-like property for integer ordering.  (Contributed by
       NM, 29-Oct-2005.)
 | 
                             
        
        
        | 
|   | 
| Theorem | recnz 9419 | 
The reciprocal of a number greater than 1 is not an integer.  (Contributed
     by NM, 3-May-2005.)
 | 
                      
              | 
|   | 
| Theorem | btwnnz 9420 | 
A number between an integer and its successor is not an integer.
     (Contributed by NM, 3-May-2005.)
 | 
                                            | 
|   | 
| Theorem | gtndiv 9421 | 
A larger number does not divide a smaller positive integer.  (Contributed
     by NM, 3-May-2005.)
 | 
                                      
      | 
|   | 
| Theorem | halfnz 9422 | 
One-half is not an integer.  (Contributed by NM, 31-Jul-2004.)
 | 
                | 
|   | 
| Theorem | 3halfnz 9423 | 
Three halves is not an integer.  (Contributed by AV, 2-Jun-2020.)
 | 
                | 
|   | 
| Theorem | suprzclex 9424* | 
The supremum of a set of integers is an element of the set.
       (Contributed by Jim Kingdon, 20-Dec-2021.)
 | 
                               
                
                                                      
             | 
|   | 
| Theorem | prime 9425* | 
Two ways to express "  is a prime number (or 1)".  (Contributed by
       NM, 4-May-2005.)
 | 
                                                                     
                
                 | 
|   | 
| Theorem | msqznn 9426 | 
The square of a nonzero integer is a positive integer.  (Contributed by
     NM, 2-Aug-2004.)
 | 
                    
              | 
|   | 
| Theorem | zneo 9427 | 
No even integer equals an odd integer (i.e. no integer can be both even
     and odd).  Exercise 10(a) of [Apostol] p.
28.  (Contributed by NM,
     31-Jul-2004.)  (Proof shortened by Mario Carneiro, 18-May-2014.)
 | 
                                         
     | 
|   | 
| Theorem | nneoor 9428 | 
A positive integer is even or odd.  (Contributed by Jim Kingdon,
       15-Mar-2020.)
 | 
                                  
            | 
|   | 
| Theorem | nneo 9429 | 
A positive integer is even or odd but not both.  (Contributed by NM,
       1-Jan-2006.)  (Proof shortened by Mario Carneiro, 18-May-2014.)
 | 
                                    
            | 
|   | 
| Theorem | nneoi 9430 | 
A positive integer is even or odd but not both.  (Contributed by NM,
       20-Aug-2001.)
 | 
                                                    | 
|   | 
| Theorem | zeo 9431 | 
An integer is even or odd.  (Contributed by NM, 1-Jan-2006.)
 | 
                                  
            | 
|   | 
| Theorem | zeo2 9432 | 
An integer is even or odd but not both.  (Contributed by Mario Carneiro,
     12-Sep-2015.)
 | 
                                    
            | 
|   | 
| Theorem | peano2uz2 9433* | 
Second Peano postulate for upper integers.  (Contributed by NM,
       3-Oct-2004.)
 | 
                    
                 
                         | 
|   | 
| Theorem | peano5uzti 9434* | 
Peano's inductive postulate for upper integers.  (Contributed by NM,
       6-Jul-2005.)  (Revised by Mario Carneiro, 25-Jul-2013.)
 | 
                                   
                         
     | 
|   | 
| Theorem | peano5uzi 9435* | 
Peano's inductive postulate for upper integers.  (Contributed by NM,
         6-Jul-2005.)  (Revised by Mario Carneiro, 3-May-2014.)
 | 
                              
       
                            
    | 
|   | 
| Theorem | dfuzi 9436* | 
An expression for the upper integers that start at   that is
       analogous to dfnn2 8992 for positive integers.  (Contributed by NM,
       6-Jul-2005.)  (Proof shortened by Mario Carneiro, 3-May-2014.)
 | 
                                                          
            | 
|   | 
| Theorem | uzind 9437* | 
Induction on the upper integers that start at  .  The first four
       hypotheses give us the substitution instances we need; the last two are
       the basis and the induction step.  (Contributed by NM, 5-Jul-2005.)
 | 
                                                                                                                    
                                          
                                            
    | 
|   | 
| Theorem | uzind2 9438* | 
Induction on the upper integers that start after an integer  .
       The first four hypotheses give us the substitution instances we need;
       the last two are the basis and the induction step.  (Contributed by NM,
       25-Jul-2005.)
 | 
                                                                                                                          
                                          
                                            
    | 
|   | 
| Theorem | uzind3 9439* | 
Induction on the upper integers that start at an integer  .  The
       first four hypotheses give us the substitution instances we need, and
       the last two are the basis and the induction step.  (Contributed by NM,
       26-Jul-2005.)
 | 
                                                                                                                    
                                        
        
                                          
        
    | 
|   | 
| Theorem | nn0ind 9440* | 
Principle of Mathematical Induction (inference schema) on nonnegative
       integers.  The first four hypotheses give us the substitution instances
       we need; the last two are the basis and the induction step.
       (Contributed by NM, 13-May-2004.)
 | 
                                
                          
                                
                                             
                         | 
|   | 
| Theorem | fzind 9441* | 
Induction on the integers from   to  
inclusive .  The first
       four hypotheses give us the substitution instances we need; the last two
       are the basis and the induction step.  (Contributed by Paul Chapman,
       31-Mar-2011.)
 | 
                                
                          
                                
                                                                          
                  
                                                        
                          | 
|   | 
| Theorem | fnn0ind 9442* | 
Induction on the integers from   to  
inclusive .  The first
       four hypotheses give us the substitution instances we need; the last two
       are the basis and the induction step.  (Contributed by Paul Chapman,
       31-Mar-2011.)
 | 
                                
                          
                                
                          
                                                                   
              
         | 
|   | 
| Theorem | nn0ind-raph 9443* | 
Principle of Mathematical Induction (inference schema) on nonnegative
       integers.  The first four hypotheses give us the substitution instances
       we need; the last two are the basis and the induction step.  Raph Levien
       remarks:  "This seems a bit painful.  I wonder if an explicit
       substitution version would be easier."  (Contributed by Raph
Levien,
       10-Apr-2004.)
 | 
                                
                          
                                
                                             
                         | 
|   | 
| Theorem | zindd 9444* | 
Principle of Mathematical Induction on all integers, deduction version.
       The first five hypotheses give the substitutions; the last three are the
       basis, the induction, and the extension to negative numbers.
       (Contributed by Paul Chapman, 17-Apr-2009.)  (Proof shortened by Mario
       Carneiro, 4-Jan-2017.)
 | 
                                
                          
                                
                           
                                                        
                                
                       
         | 
|   | 
| Theorem | btwnz 9445* | 
Any real number can be sandwiched between two integers.  Exercise 2 of
       [Apostol] p. 28.  (Contributed by NM,
10-Nov-2004.)
 | 
                                          | 
|   | 
| Theorem | nn0zd 9446 | 
A positive integer is an integer.  (Contributed by Mario Carneiro,
       28-May-2016.)
 | 
                                  | 
|   | 
| Theorem | nnzd 9447 | 
A nonnegative integer is an integer.  (Contributed by Mario Carneiro,
       28-May-2016.)
 | 
                                  | 
|   | 
| Theorem | zred 9448 | 
An integer is a real number.  (Contributed by Mario Carneiro,
       28-May-2016.)
 | 
                                  | 
|   | 
| Theorem | zcnd 9449 | 
An integer is a complex number.  (Contributed by Mario Carneiro,
       28-May-2016.)
 | 
                                  | 
|   | 
| Theorem | znegcld 9450 | 
Closure law for negative integers.  (Contributed by Mario Carneiro,
       28-May-2016.)
 | 
                                   | 
|   | 
| Theorem | peano2zd 9451 | 
Deduction from second Peano postulate generalized to integers.
       (Contributed by Mario Carneiro, 28-May-2016.)
 | 
                               
         | 
|   | 
| Theorem | zaddcld 9452 | 
Closure of addition of integers.  (Contributed by Mario Carneiro,
       28-May-2016.)
 | 
                                                            | 
|   | 
| Theorem | zsubcld 9453 | 
Closure of subtraction of integers.  (Contributed by Mario Carneiro,
       28-May-2016.)
 | 
                                                            | 
|   | 
| Theorem | zmulcld 9454 | 
Closure of multiplication of integers.  (Contributed by Mario Carneiro,
       28-May-2016.)
 | 
                                                            | 
|   | 
| Theorem | zadd2cl 9455 | 
Increasing an integer by 2 results in an integer.  (Contributed by
     Alexander van der Vekens, 16-Sep-2018.)
 | 
                        | 
|   | 
| Theorem | btwnapz 9456 | 
A number between an integer and its successor is apart from any integer.
       (Contributed by Jim Kingdon, 6-Jan-2023.)
 | 
                                                                                                                   #    | 
|   | 
| 4.4.10  Decimal arithmetic
 | 
|   | 
| Syntax | cdc 9457 | 
Constant used for decimal constructor.
 | 
  ;   | 
|   | 
| Definition | df-dec 9458 | 
Define the "decimal constructor", which is used to build up
"decimal
     integers" or "numeric terms" in base   .  For example,
      ;;;       ;;;        ;;;     1kp2ke3k 15370.
     (Contributed by Mario Carneiro, 17-Apr-2015.)  (Revised by AV,
     1-Aug-2021.)
 | 
  ;                         | 
|   | 
| Theorem | 9p1e10 9459 | 
9 + 1 = 10.  (Contributed by Mario Carneiro, 18-Apr-2015.)  (Revised by
     Stanislas Polu, 7-Apr-2020.)  (Revised by AV, 1-Aug-2021.)
 | 
            ;   | 
|   | 
| Theorem | dfdec10 9460 | 
Version of the definition of the "decimal constructor" using ;  
     instead of the symbol 10.  Of course, this statement cannot be used as
     definition, because it uses the "decimal constructor". 
(Contributed by
     AV, 1-Aug-2021.)
 | 
  ;       ;         
    | 
|   | 
| Theorem | deceq1 9461 | 
Equality theorem for the decimal constructor.  (Contributed by Mario
     Carneiro, 17-Apr-2015.)  (Revised by AV, 6-Sep-2021.)
 | 
           ;    
 ;    | 
|   | 
| Theorem | deceq2 9462 | 
Equality theorem for the decimal constructor.  (Contributed by Mario
     Carneiro, 17-Apr-2015.)  (Revised by AV, 6-Sep-2021.)
 | 
           ;    
 ;    | 
|   | 
| Theorem | deceq1i 9463 | 
Equality theorem for the decimal constructor.  (Contributed by Mario
       Carneiro, 17-Apr-2015.)
 | 
                ;     ;   | 
|   | 
| Theorem | deceq2i 9464 | 
Equality theorem for the decimal constructor.  (Contributed by Mario
       Carneiro, 17-Apr-2015.)
 | 
                ;     ;   | 
|   | 
| Theorem | deceq12i 9465 | 
Equality theorem for the decimal constructor.  (Contributed by Mario
       Carneiro, 17-Apr-2015.)
 | 
                              ;     ;   | 
|   | 
| Theorem | numnncl 9466 | 
Closure for a numeral (with units place).  (Contributed by Mario
         Carneiro, 18-Feb-2014.)
 | 
                                                         
     | 
|   | 
| Theorem | num0u 9467 | 
Add a zero in the units place.  (Contributed by Mario Carneiro,
       18-Feb-2014.)
 | 
                                       
               | 
|   | 
| Theorem | num0h 9468 | 
Add a zero in the higher places.  (Contributed by Mario Carneiro,
       18-Feb-2014.)
 | 
                                                | 
|   | 
| Theorem | numcl 9469 | 
Closure for a decimal integer (with units place).  (Contributed by Mario
       Carneiro, 18-Feb-2014.)
 | 
                                                    
       
   | 
|   | 
| Theorem | numsuc 9470 | 
The successor of a decimal integer (no carry).  (Contributed by Mario
       Carneiro, 18-Feb-2014.)
 | 
                                                                            
                                      | 
|   | 
| Theorem | deccl 9471 | 
Closure for a numeral.  (Contributed by Mario Carneiro, 17-Apr-2015.)
       (Revised by AV, 6-Sep-2021.)
 | 
                              ;       | 
|   | 
| Theorem | 10nn 9472 | 
10 is a positive integer.  (Contributed by NM, 8-Nov-2012.)  (Revised by
     AV, 6-Sep-2021.)
 | 
  ;       | 
|   | 
| Theorem | 10pos 9473 | 
The number 10 is positive.  (Contributed by NM, 5-Feb-2007.)  (Revised by
     AV, 8-Sep-2021.)
 | 
     
 ;   | 
|   | 
| Theorem | 10nn0 9474 | 
10 is a nonnegative integer.  (Contributed by Mario Carneiro,
     19-Apr-2015.)  (Revised by AV, 6-Sep-2021.)
 | 
  ;       | 
|   | 
| Theorem | 10re 9475 | 
The number 10 is real.  (Contributed by NM, 5-Feb-2007.)  (Revised by AV,
     8-Sep-2021.)
 | 
  ;       | 
|   | 
| Theorem | decnncl 9476 | 
Closure for a numeral.  (Contributed by Mario Carneiro, 17-Apr-2015.)
       (Revised by AV, 6-Sep-2021.)
 | 
                              ;       | 
|   | 
| Theorem | dec0u 9477 | 
Add a zero in the units place.  (Contributed by Mario Carneiro,
       17-Apr-2015.)  (Revised by AV, 6-Sep-2021.)
 | 
                 ;         
 ;   | 
|   | 
| Theorem | dec0h 9478 | 
Add a zero in the higher places.  (Contributed by Mario Carneiro,
       17-Apr-2015.)  (Revised by AV, 6-Sep-2021.)
 | 
                    ;   | 
|   | 
| Theorem | numnncl2 9479 | 
Closure for a decimal integer (zero units place).  (Contributed by Mario
       Carneiro, 9-Mar-2015.)
 | 
                                      
          | 
|   | 
| Theorem | decnncl2 9480 | 
Closure for a decimal integer (zero units place).  (Contributed by Mario
       Carneiro, 17-Apr-2015.)  (Revised by AV, 6-Sep-2021.)
 | 
                ;       | 
|   | 
| Theorem | numlt 9481 | 
Comparing two decimal integers (equal higher places).  (Contributed by
         Mario Carneiro, 18-Feb-2014.)
 | 
                                                                                
                      | 
|   | 
| Theorem | numltc 9482 | 
Comparing two decimal integers (unequal higher places).  (Contributed by
       Mario Carneiro, 18-Feb-2014.)
 | 
                                                                                                            
                      | 
|   | 
| Theorem | le9lt10 9483 | 
A "decimal digit" (i.e. a nonnegative integer less than or equal to
9)
       is less then 10.  (Contributed by AV, 8-Sep-2021.)
 | 
                   
               ;   | 
|   | 
| Theorem | declt 9484 | 
Comparing two decimal integers (equal higher places).  (Contributed by
         Mario Carneiro, 17-Apr-2015.)  (Revised by AV, 6-Sep-2021.)
 | 
                                                          ;     ;   | 
|   | 
| Theorem | decltc 9485 | 
Comparing two decimal integers (unequal higher places).  (Contributed
         by Mario Carneiro, 18-Feb-2014.)  (Revised by AV, 6-Sep-2021.)
 | 
                                                             
 ;                         ;     ;   | 
|   | 
| Theorem | declth 9486 | 
Comparing two decimal integers (unequal higher places).  (Contributed
         by AV, 8-Sep-2021.)
 | 
                                                             
                         ;     ;   | 
|   | 
| Theorem | decsuc 9487 | 
The successor of a decimal integer (no carry).  (Contributed by Mario
       Carneiro, 17-Apr-2015.)  (Revised by AV, 6-Sep-2021.)
 | 
                                                      ;                     ;   | 
|   | 
| Theorem | 3declth 9488 | 
Comparing two decimal integers with three "digits" (unequal higher
         places).  (Contributed by AV, 8-Sep-2021.)
 | 
                                                                                                                                ;;   
   ;;    | 
|   | 
| Theorem | 3decltc 9489 | 
Comparing two decimal integers with three "digits" (unequal higher
       places).  (Contributed by AV, 15-Jun-2021.)  (Revised by AV,
       6-Sep-2021.)
 | 
                                                                                                        ;              
 ;           ;;      ;;    | 
|   | 
| Theorem | decle 9490 | 
Comparing two decimal integers (equal higher places).  (Contributed by
         AV, 17-Aug-2021.)  (Revised by AV, 8-Sep-2021.)
 | 
                                               
           ;     ;   | 
|   | 
| Theorem | decleh 9491 | 
Comparing two decimal integers (unequal higher places).  (Contributed by
       AV, 17-Aug-2021.)  (Revised by AV, 8-Sep-2021.)
 | 
                                                             
                         ;     ;   | 
|   | 
| Theorem | declei 9492 | 
Comparing a digit to a decimal integer.  (Contributed by AV,
       17-Aug-2021.)
 | 
                                               
               ;   | 
|   | 
| Theorem | numlti 9493 | 
Comparing a digit to a decimal integer.  (Contributed by Mario Carneiro,
       18-Feb-2014.)
 | 
                                                                                      
    | 
|   | 
| Theorem | declti 9494 | 
Comparing a digit to a decimal integer.  (Contributed by Mario
         Carneiro, 18-Feb-2014.)  (Revised by AV, 6-Sep-2021.)
 | 
                                               
 ;              
 ;   | 
|   | 
| Theorem | decltdi 9495 | 
Comparing a digit to a decimal integer.  (Contributed by AV,
       8-Sep-2021.)
 | 
                                               
               ;   | 
|   | 
| Theorem | numsucc 9496 | 
The successor of a decimal integer (with carry).  (Contributed by Mario
       Carneiro, 18-Feb-2014.)
 | 
                                                                                  
                                      | 
|   | 
| Theorem | decsucc 9497 | 
The successor of a decimal integer (with carry).  (Contributed by Mario
       Carneiro, 18-Feb-2014.)  (Revised by AV, 6-Sep-2021.)
 | 
                                        ;                     ;   | 
|   | 
| Theorem | 1e0p1 9498 | 
The successor of zero.  (Contributed by Mario Carneiro, 18-Feb-2014.)
 | 
              | 
|   | 
| Theorem | dec10p 9499 | 
Ten plus an integer.  (Contributed by Mario Carneiro, 19-Apr-2015.)
     (Revised by AV, 6-Sep-2021.)
 | 
   ;         
 ;   | 
|   | 
| Theorem | numma 9500 | 
Perform a multiply-add of two decimal integers   and   against
         a fixed multiplicand   (no carry).  (Contributed by Mario
         Carneiro, 18-Feb-2014.)
 | 
                                                                                                              
                                    
       
                        
                       
              
      |