HomeHome Intuitionistic Logic Explorer
Theorem List (p. 95 of 162)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 9401-9500   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremzex 9401 The set of integers exists. (Contributed by NM, 30-Jul-2004.) (Revised by Mario Carneiro, 17-Nov-2014.)
 |- 
 ZZ  e.  _V
 
Theoremelnnz 9402 Positive integer property expressed in terms of integers. (Contributed by NM, 8-Jan-2002.)
 |-  ( N  e.  NN  <->  ( N  e.  ZZ  /\  0  <  N ) )
 
Theorem0z 9403 Zero is an integer. (Contributed by NM, 12-Jan-2002.)
 |-  0  e.  ZZ
 
Theorem0zd 9404 Zero is an integer, deductive form (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
 |-  ( ph  ->  0  e.  ZZ )
 
Theoremelnn0z 9405 Nonnegative integer property expressed in terms of integers. (Contributed by NM, 9-May-2004.)
 |-  ( N  e.  NN0  <->  ( N  e.  ZZ  /\  0  <_  N ) )
 
Theoremelznn0nn 9406 Integer property expressed in terms nonnegative integers and positive integers. (Contributed by NM, 10-May-2004.)
 |-  ( N  e.  ZZ  <->  ( N  e.  NN0  \/  ( N  e.  RR  /\  -u N  e.  NN ) ) )
 
Theoremelznn0 9407 Integer property expressed in terms of nonnegative integers. (Contributed by NM, 9-May-2004.)
 |-  ( N  e.  ZZ  <->  ( N  e.  RR  /\  ( N  e.  NN0  \/  -u N  e.  NN0 ) ) )
 
Theoremelznn 9408 Integer property expressed in terms of positive integers and nonnegative integers. (Contributed by NM, 12-Jul-2005.)
 |-  ( N  e.  ZZ  <->  ( N  e.  RR  /\  ( N  e.  NN  \/  -u N  e.  NN0 )
 ) )
 
Theoremnnssz 9409 Positive integers are a subset of integers. (Contributed by NM, 9-Jan-2002.)
 |- 
 NN  C_  ZZ
 
Theoremnn0ssz 9410 Nonnegative integers are a subset of the integers. (Contributed by NM, 9-May-2004.)
 |- 
 NN0  C_  ZZ
 
Theoremnnz 9411 A positive integer is an integer. (Contributed by NM, 9-May-2004.)
 |-  ( N  e.  NN  ->  N  e.  ZZ )
 
Theoremnn0z 9412 A nonnegative integer is an integer. (Contributed by NM, 9-May-2004.)
 |-  ( N  e.  NN0  ->  N  e.  ZZ )
 
Theoremnnzi 9413 A positive integer is an integer. (Contributed by Mario Carneiro, 18-Feb-2014.)
 |-  N  e.  NN   =>    |-  N  e.  ZZ
 
Theoremnn0zi 9414 A nonnegative integer is an integer. (Contributed by Mario Carneiro, 18-Feb-2014.)
 |-  N  e.  NN0   =>    |-  N  e.  ZZ
 
Theoremelnnz1 9415 Positive integer property expressed in terms of integers. (Contributed by NM, 10-May-2004.) (Proof shortened by Mario Carneiro, 16-May-2014.)
 |-  ( N  e.  NN  <->  ( N  e.  ZZ  /\  1  <_  N ) )
 
Theoremnnzrab 9416 Positive integers expressed as a subset of integers. (Contributed by NM, 3-Oct-2004.)
 |- 
 NN  =  { x  e.  ZZ  |  1  <_  x }
 
Theoremnn0zrab 9417 Nonnegative integers expressed as a subset of integers. (Contributed by NM, 3-Oct-2004.)
 |- 
 NN0  =  { x  e.  ZZ  |  0  <_  x }
 
Theorem1z 9418 One is an integer. (Contributed by NM, 10-May-2004.)
 |-  1  e.  ZZ
 
Theorem1zzd 9419 1 is an integer, deductive form (common case). (Contributed by David A. Wheeler, 6-Dec-2018.)
 |-  ( ph  ->  1  e.  ZZ )
 
Theorem2z 9420 Two is an integer. (Contributed by NM, 10-May-2004.)
 |-  2  e.  ZZ
 
Theorem3z 9421 3 is an integer. (Contributed by David A. Wheeler, 8-Dec-2018.)
 |-  3  e.  ZZ
 
Theorem4z 9422 4 is an integer. (Contributed by BJ, 26-Mar-2020.)
 |-  4  e.  ZZ
 
Theoremznegcl 9423 Closure law for negative integers. (Contributed by NM, 9-May-2004.)
 |-  ( N  e.  ZZ  -> 
 -u N  e.  ZZ )
 
Theoremneg1z 9424 -1 is an integer (common case). (Contributed by David A. Wheeler, 5-Dec-2018.)
 |-  -u 1  e.  ZZ
 
Theoremznegclb 9425 A number is an integer iff its negative is. (Contributed by Stefan O'Rear, 13-Sep-2014.)
 |-  ( A  e.  CC  ->  ( A  e.  ZZ  <->  -u A  e.  ZZ ) )
 
Theoremnn0negz 9426 The negative of a nonnegative integer is an integer. (Contributed by NM, 9-May-2004.)
 |-  ( N  e.  NN0  ->  -u N  e.  ZZ )
 
Theoremnn0negzi 9427 The negative of a nonnegative integer is an integer. (Contributed by Mario Carneiro, 18-Feb-2014.)
 |-  N  e.  NN0   =>    |-  -u N  e.  ZZ
 
Theorempeano2z 9428 Second Peano postulate generalized to integers. (Contributed by NM, 13-Feb-2005.)
 |-  ( N  e.  ZZ  ->  ( N  +  1 )  e.  ZZ )
 
Theoremzaddcllempos 9429 Lemma for zaddcl 9432. Special case in which  N is a positive integer. (Contributed by Jim Kingdon, 14-Mar-2020.)
 |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( M  +  N )  e.  ZZ )
 
Theorempeano2zm 9430 "Reverse" second Peano postulate for integers. (Contributed by NM, 12-Sep-2005.)
 |-  ( N  e.  ZZ  ->  ( N  -  1
 )  e.  ZZ )
 
Theoremzaddcllemneg 9431 Lemma for zaddcl 9432. Special case in which  -u N is a positive integer. (Contributed by Jim Kingdon, 14-Mar-2020.)
 |-  ( ( M  e.  ZZ  /\  N  e.  RR  /\  -u N  e.  NN )  ->  ( M  +  N )  e.  ZZ )
 
Theoremzaddcl 9432 Closure of addition of integers. (Contributed by NM, 9-May-2004.) (Proof shortened by Mario Carneiro, 16-May-2014.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  +  N )  e.  ZZ )
 
Theoremzsubcl 9433 Closure of subtraction of integers. (Contributed by NM, 11-May-2004.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  -  N )  e.  ZZ )
 
Theoremztri3or0 9434 Integer trichotomy (with zero). (Contributed by Jim Kingdon, 14-Mar-2020.)
 |-  ( N  e.  ZZ  ->  ( N  <  0  \/  N  =  0  \/  0  <  N ) )
 
Theoremztri3or 9435 Integer trichotomy. (Contributed by Jim Kingdon, 14-Mar-2020.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  <  N  \/  M  =  N  \/  N  <  M ) )
 
Theoremzletric 9436 Trichotomy law. (Contributed by Jim Kingdon, 27-Mar-2020.)
 |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  <_  B  \/  B  <_  A ) )
 
Theoremzlelttric 9437 Trichotomy law. (Contributed by Jim Kingdon, 17-Apr-2020.)
 |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  <_  B  \/  B  <  A ) )
 
Theoremzltnle 9438 'Less than' expressed in terms of 'less than or equal to'. (Contributed by Jim Kingdon, 14-Mar-2020.)
 |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  <  B  <->  -.  B  <_  A )
 )
 
Theoremzleloe 9439 Integer 'Less than or equal to' expressed in terms of 'less than' or 'equals'. (Contributed by Jim Kingdon, 8-Apr-2020.)
 |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  <_  B  <-> 
 ( A  <  B  \/  A  =  B ) ) )
 
Theoremznnnlt1 9440 An integer is not a positive integer iff it is less than one. (Contributed by NM, 13-Jul-2005.)
 |-  ( N  e.  ZZ  ->  ( -.  N  e.  NN 
 <->  N  <  1 ) )
 
Theoremnnnle0 9441 A positive integer is not less than or equal to zero. (Contributed by AV, 13-May-2020.)
 |-  ( A  e.  NN  ->  -.  A  <_  0
 )
 
Theoremzletr 9442 Transitive law of ordering for integers. (Contributed by Alexander van der Vekens, 3-Apr-2018.)
 |-  ( ( J  e.  ZZ  /\  K  e.  ZZ  /\  L  e.  ZZ )  ->  ( ( J  <_  K 
 /\  K  <_  L )  ->  J  <_  L ) )
 
Theoremzrevaddcl 9443 Reverse closure law for addition of integers. (Contributed by NM, 11-May-2004.)
 |-  ( N  e.  ZZ  ->  ( ( M  e.  CC  /\  ( M  +  N )  e.  ZZ ) 
 <->  M  e.  ZZ )
 )
 
Theoremznnsub 9444 The positive difference of unequal integers is a positive integer. (Generalization of nnsub 9095.) (Contributed by NM, 11-May-2004.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  <  N  <-> 
 ( N  -  M )  e.  NN )
 )
 
Theoremnzadd 9445 The sum of a real number not being an integer and an integer is not an integer. Note that "not being an integer" in this case means "the negation of is an integer" rather than "is apart from any integer" (given excluded middle, those two would be equivalent). (Contributed by AV, 19-Jul-2021.)
 |-  ( ( A  e.  ( RR  \  ZZ )  /\  B  e.  ZZ )  ->  ( A  +  B )  e.  ( RR  \  ZZ ) )
 
Theoremzmulcl 9446 Closure of multiplication of integers. (Contributed by NM, 30-Jul-2004.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  x.  N )  e.  ZZ )
 
Theoremzltp1le 9447 Integer ordering relation. (Contributed by NM, 10-May-2004.) (Proof shortened by Mario Carneiro, 16-May-2014.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  <  N  <-> 
 ( M  +  1 )  <_  N )
 )
 
Theoremzleltp1 9448 Integer ordering relation. (Contributed by NM, 10-May-2004.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  <_  N  <->  M  <  ( N  +  1 ) ) )
 
Theoremzlem1lt 9449 Integer ordering relation. (Contributed by NM, 13-Nov-2004.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  <_  N  <-> 
 ( M  -  1
 )  <  N )
 )
 
Theoremzltlem1 9450 Integer ordering relation. (Contributed by NM, 13-Nov-2004.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  <  N  <->  M  <_  ( N  -  1 ) ) )
 
Theoremzgt0ge1 9451 An integer greater than  0 is greater than or equal to  1. (Contributed by AV, 14-Oct-2018.)
 |-  ( Z  e.  ZZ  ->  ( 0  <  Z  <->  1 
 <_  Z ) )
 
Theoremnnleltp1 9452 Positive integer ordering relation. (Contributed by NM, 13-Aug-2001.) (Proof shortened by Mario Carneiro, 16-May-2014.)
 |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( A  <_  B  <->  A  <  ( B  +  1 ) ) )
 
Theoremnnltp1le 9453 Positive integer ordering relation. (Contributed by NM, 19-Aug-2001.)
 |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( A  <  B  <-> 
 ( A  +  1 )  <_  B )
 )
 
Theoremnnaddm1cl 9454 Closure of addition of positive integers minus one. (Contributed by NM, 6-Aug-2003.) (Proof shortened by Mario Carneiro, 16-May-2014.)
 |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( ( A  +  B )  -  1 )  e.  NN )
 
Theoremnn0ltp1le 9455 Nonnegative integer ordering relation. (Contributed by Raph Levien, 10-Dec-2002.) (Proof shortened by Mario Carneiro, 16-May-2014.)
 |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  ( M  <  N  <->  ( M  +  1 ) 
 <_  N ) )
 
Theoremnn0leltp1 9456 Nonnegative integer ordering relation. (Contributed by Raph Levien, 10-Apr-2004.)
 |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  ( M  <_  N  <->  M  <  ( N  +  1 ) ) )
 
Theoremnn0ltlem1 9457 Nonnegative integer ordering relation. (Contributed by NM, 10-May-2004.) (Proof shortened by Mario Carneiro, 16-May-2014.)
 |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  ( M  <  N  <->  M 
 <_  ( N  -  1
 ) ) )
 
Theoremznn0sub 9458 The nonnegative difference of integers is a nonnegative integer. (Generalization of nn0sub 9459.) (Contributed by NM, 14-Jul-2005.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  <_  N  <-> 
 ( N  -  M )  e.  NN0 ) )
 
Theoremnn0sub 9459 Subtraction of nonnegative integers. (Contributed by NM, 9-May-2004.)
 |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  ( M  <_  N  <->  ( N  -  M )  e.  NN0 ) )
 
Theoremltsubnn0 9460 Subtracting a nonnegative integer from a nonnegative integer which is greater than the first one results in a nonnegative integer. (Contributed by Alexander van der Vekens, 6-Apr-2018.)
 |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  ->  ( B  <  A  ->  ( A  -  B )  e.  NN0 ) )
 
Theoremnn0negleid 9461 A nonnegative integer is greater than or equal to its negative. (Contributed by AV, 13-Aug-2021.)
 |-  ( A  e.  NN0  ->  -u A  <_  A )
 
Theoremdifgtsumgt 9462 If the difference of a real number and a nonnegative integer is greater than another real number, the sum of the real number and the nonnegative integer is also greater than the other real number. (Contributed by AV, 13-Aug-2021.)
 |-  ( ( A  e.  RR  /\  B  e.  NN0  /\  C  e.  RR )  ->  ( C  <  ( A  -  B )  ->  C  <  ( A  +  B ) ) )
 
Theoremnn0n0n1ge2 9463 A nonnegative integer which is neither 0 nor 1 is greater than or equal to 2. (Contributed by Alexander van der Vekens, 6-Dec-2017.)
 |-  ( ( N  e.  NN0  /\  N  =/=  0  /\  N  =/=  1 )  -> 
 2  <_  N )
 
Theoremelz2 9464* Membership in the set of integers. Commonly used in constructions of the integers as equivalence classes under subtraction of the positive integers. (Contributed by Mario Carneiro, 16-May-2014.)
 |-  ( N  e.  ZZ  <->  E. x  e.  NN  E. y  e.  NN  N  =  ( x  -  y ) )
 
Theoremdfz2 9465 Alternate definition of the integers, based on elz2 9464. (Contributed by Mario Carneiro, 16-May-2014.)
 |- 
 ZZ  =  (  -  " ( NN  X.  NN ) )
 
Theoremnn0sub2 9466 Subtraction of nonnegative integers. (Contributed by NM, 4-Sep-2005.)
 |-  ( ( M  e.  NN0  /\  N  e.  NN0  /\  M  <_  N )  ->  ( N  -  M )  e. 
 NN0 )
 
Theoremzapne 9467 Apartness is equivalent to not equal for integers. (Contributed by Jim Kingdon, 14-Mar-2020.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M #  N  <->  M  =/=  N ) )
 
Theoremzdceq 9468 Equality of integers is decidable. (Contributed by Jim Kingdon, 14-Mar-2020.)
 |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  -> DECID  A  =  B )
 
Theoremzdcle 9469 Integer  <_ is decidable. (Contributed by Jim Kingdon, 7-Apr-2020.)
 |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  -> DECID  A  <_  B )
 
Theoremzdclt 9470 Integer  < is decidable. (Contributed by Jim Kingdon, 1-Jun-2020.)
 |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  -> DECID  A  <  B )
 
Theoremzltlen 9471 Integer 'Less than' expressed in terms of 'less than or equal to'. Also see ltleap 8725 which is a similar result for real numbers. (Contributed by Jim Kingdon, 14-Mar-2020.)
 |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  <  B  <-> 
 ( A  <_  B  /\  B  =/=  A ) ) )
 
Theoremnn0n0n1ge2b 9472 A nonnegative integer is neither 0 nor 1 if and only if it is greater than or equal to 2. (Contributed by Alexander van der Vekens, 17-Jan-2018.)
 |-  ( N  e.  NN0  ->  ( ( N  =/=  0  /\  N  =/=  1
 ) 
 <->  2  <_  N )
 )
 
Theoremnn0lt10b 9473 A nonnegative integer less than  1 is  0. (Contributed by Paul Chapman, 22-Jun-2011.)
 |-  ( N  e.  NN0  ->  ( N  <  1  <->  N  =  0
 ) )
 
Theoremnn0lt2 9474 A nonnegative integer less than 2 must be 0 or 1. (Contributed by Alexander van der Vekens, 16-Sep-2018.)
 |-  ( ( N  e.  NN0  /\  N  <  2 ) 
 ->  ( N  =  0  \/  N  =  1 ) )
 
Theoremnn0le2is012 9475 A nonnegative integer which is less than or equal to 2 is either 0 or 1 or 2. (Contributed by AV, 16-Mar-2019.)
 |-  ( ( N  e.  NN0  /\  N  <_  2 )  ->  ( N  =  0  \/  N  =  1  \/  N  =  2 ) )
 
Theoremnn0lem1lt 9476 Nonnegative integer ordering relation. (Contributed by NM, 21-Jun-2005.)
 |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  ( M  <_  N  <->  ( M  -  1 )  <  N ) )
 
Theoremnnlem1lt 9477 Positive integer ordering relation. (Contributed by NM, 21-Jun-2005.)
 |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( M  <_  N  <-> 
 ( M  -  1
 )  <  N )
 )
 
Theoremnnltlem1 9478 Positive integer ordering relation. (Contributed by NM, 21-Jun-2005.)
 |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( M  <  N  <->  M  <_  ( N  -  1 ) ) )
 
Theoremnnm1ge0 9479 A positive integer decreased by 1 is greater than or equal to 0. (Contributed by AV, 30-Oct-2018.)
 |-  ( N  e.  NN  ->  0  <_  ( N  -  1 ) )
 
Theoremnn0ge0div 9480 Division of a nonnegative integer by a positive number is not negative. (Contributed by Alexander van der Vekens, 14-Apr-2018.)
 |-  ( ( K  e.  NN0  /\  L  e.  NN )  ->  0  <_  ( K  /  L ) )
 
Theoremzdiv 9481* Two ways to express " M divides  N. (Contributed by NM, 3-Oct-2008.)
 |-  ( ( M  e.  NN  /\  N  e.  ZZ )  ->  ( E. k  e.  ZZ  ( M  x.  k )  =  N  <->  ( N  /  M )  e.  ZZ ) )
 
Theoremzdivadd 9482 Property of divisibility: if  D divides  A and  B then it divides  A  +  B. (Contributed by NM, 3-Oct-2008.)
 |-  ( ( ( D  e.  NN  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  /  D )  e.  ZZ  /\  ( B  /  D )  e. 
 ZZ ) )  ->  ( ( A  +  B )  /  D )  e.  ZZ )
 
Theoremzdivmul 9483 Property of divisibility: if  D divides  A then it divides  B  x.  A. (Contributed by NM, 3-Oct-2008.)
 |-  ( ( ( D  e.  NN  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( A 
 /  D )  e. 
 ZZ )  ->  (
 ( B  x.  A )  /  D )  e. 
 ZZ )
 
Theoremzextle 9484* An extensionality-like property for integer ordering. (Contributed by NM, 29-Oct-2005.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\ 
 A. k  e.  ZZ  ( k  <_  M  <->  k  <_  N ) )  ->  M  =  N )
 
Theoremzextlt 9485* An extensionality-like property for integer ordering. (Contributed by NM, 29-Oct-2005.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\ 
 A. k  e.  ZZ  ( k  <  M  <->  k  <  N ) )  ->  M  =  N )
 
Theoremrecnz 9486 The reciprocal of a number greater than 1 is not an integer. (Contributed by NM, 3-May-2005.)
 |-  ( ( A  e.  RR  /\  1  <  A )  ->  -.  ( 1  /  A )  e.  ZZ )
 
Theorembtwnnz 9487 A number between an integer and its successor is not an integer. (Contributed by NM, 3-May-2005.)
 |-  ( ( A  e.  ZZ  /\  A  <  B  /\  B  <  ( A  +  1 ) ) 
 ->  -.  B  e.  ZZ )
 
Theoremgtndiv 9488 A larger number does not divide a smaller positive integer. (Contributed by NM, 3-May-2005.)
 |-  ( ( A  e.  RR  /\  B  e.  NN  /\  B  <  A ) 
 ->  -.  ( B  /  A )  e.  ZZ )
 
Theoremhalfnz 9489 One-half is not an integer. (Contributed by NM, 31-Jul-2004.)
 |- 
 -.  ( 1  / 
 2 )  e.  ZZ
 
Theorem3halfnz 9490 Three halves is not an integer. (Contributed by AV, 2-Jun-2020.)
 |- 
 -.  ( 3  / 
 2 )  e.  ZZ
 
Theoremsuprzclex 9491* The supremum of a set of integers is an element of the set. (Contributed by Jim Kingdon, 20-Dec-2021.)
 |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  < 
 y  /\  A. y  e. 
 RR  ( y  < 
 x  ->  E. z  e.  A  y  <  z
 ) ) )   &    |-  ( ph  ->  A  C_  ZZ )   =>    |-  ( ph  ->  sup ( A ,  RR ,  <  )  e.  A )
 
Theoremprime 9492* Two ways to express " A is a prime number (or 1)". (Contributed by NM, 4-May-2005.)
 |-  ( A  e.  NN  ->  ( A. x  e. 
 NN  ( ( A 
 /  x )  e. 
 NN  ->  ( x  =  1  \/  x  =  A ) )  <->  A. x  e.  NN  ( ( 1  < 
 x  /\  x  <_  A 
 /\  ( A  /  x )  e.  NN )  ->  x  =  A ) ) )
 
Theoremmsqznn 9493 The square of a nonzero integer is a positive integer. (Contributed by NM, 2-Aug-2004.)
 |-  ( ( A  e.  ZZ  /\  A  =/=  0
 )  ->  ( A  x.  A )  e.  NN )
 
Theoremzneo 9494 No even integer equals an odd integer (i.e. no integer can be both even and odd). Exercise 10(a) of [Apostol] p. 28. (Contributed by NM, 31-Jul-2004.) (Proof shortened by Mario Carneiro, 18-May-2014.)
 |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( 2  x.  A )  =/=  (
 ( 2  x.  B )  +  1 )
 )
 
Theoremnneoor 9495 A positive integer is even or odd. (Contributed by Jim Kingdon, 15-Mar-2020.)
 |-  ( N  e.  NN  ->  ( ( N  / 
 2 )  e.  NN  \/  ( ( N  +  1 )  /  2
 )  e.  NN )
 )
 
Theoremnneo 9496 A positive integer is even or odd but not both. (Contributed by NM, 1-Jan-2006.) (Proof shortened by Mario Carneiro, 18-May-2014.)
 |-  ( N  e.  NN  ->  ( ( N  / 
 2 )  e.  NN  <->  -.  ( ( N  +  1 )  /  2
 )  e.  NN )
 )
 
Theoremnneoi 9497 A positive integer is even or odd but not both. (Contributed by NM, 20-Aug-2001.)
 |-  N  e.  NN   =>    |-  ( ( N 
 /  2 )  e. 
 NN 
 <->  -.  ( ( N  +  1 )  / 
 2 )  e.  NN )
 
Theoremzeo 9498 An integer is even or odd. (Contributed by NM, 1-Jan-2006.)
 |-  ( N  e.  ZZ  ->  ( ( N  / 
 2 )  e.  ZZ  \/  ( ( N  +  1 )  /  2
 )  e.  ZZ )
 )
 
Theoremzeo2 9499 An integer is even or odd but not both. (Contributed by Mario Carneiro, 12-Sep-2015.)
 |-  ( N  e.  ZZ  ->  ( ( N  / 
 2 )  e.  ZZ  <->  -.  ( ( N  +  1 )  /  2
 )  e.  ZZ )
 )
 
Theorempeano2uz2 9500* Second Peano postulate for upper integers. (Contributed by NM, 3-Oct-2004.)
 |-  ( ( A  e.  ZZ  /\  B  e.  { x  e.  ZZ  |  A  <_  x } )  ->  ( B  +  1
 )  e.  { x  e.  ZZ  |  A  <_  x } )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16164
  Copyright terms: Public domain < Previous  Next >