HomeHome Intuitionistic Logic Explorer
Theorem List (p. 95 of 142)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 9401-9500   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremdecaddm10 9401 The sum of two multiples of 10 is a multiple of 10. (Contributed by AV, 30-Jul-2021.)
 |-  A  e.  NN0   &    |-  B  e.  NN0   =>    |-  (; A 0  + ; B 0 )  = ; ( A  +  B )
 0
 
Theoremdecaddi 9402 Add two numerals  M and  N (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.)
 |-  A  e.  NN0   &    |-  B  e.  NN0   &    |-  N  e.  NN0   &    |-  M  = ; A B   &    |-  ( B  +  N )  =  C   =>    |-  ( M  +  N )  = ; A C
 
Theoremdecaddci 9403 Add two numerals  M and  N (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.)
 |-  A  e.  NN0   &    |-  B  e.  NN0   &    |-  N  e.  NN0   &    |-  M  = ; A B   &    |-  ( A  +  1 )  =  D   &    |-  C  e.  NN0   &    |-  ( B  +  N )  = ; 1 C   =>    |-  ( M  +  N )  = ; D C
 
Theoremdecaddci2 9404 Add two numerals  M and  N (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.)
 |-  A  e.  NN0   &    |-  B  e.  NN0   &    |-  N  e.  NN0   &    |-  M  = ; A B   &    |-  ( A  +  1 )  =  D   &    |-  ( B  +  N )  = ; 1 0   =>    |-  ( M  +  N )  = ; D 0
 
Theoremdecsubi 9405 Difference between a numeral  M and a nonnegative integer  N (no underflow). (Contributed by AV, 22-Jul-2021.) (Revised by AV, 6-Sep-2021.)
 |-  A  e.  NN0   &    |-  B  e.  NN0   &    |-  N  e.  NN0   &    |-  M  = ; A B   &    |-  ( A  +  1 )  =  D   &    |-  ( B  -  N )  =  C   =>    |-  ( M  -  N )  = ; A C
 
Theoremdecmul1 9406 The product of a numeral with a number (no carry). (Contributed by AV, 22-Jul-2021.) (Revised by AV, 6-Sep-2021.)
 |-  P  e.  NN0   &    |-  A  e.  NN0   &    |-  B  e.  NN0   &    |-  N  = ; A B   &    |-  D  e.  NN0   &    |-  ( A  x.  P )  =  C   &    |-  ( B  x.  P )  =  D   =>    |-  ( N  x.  P )  = ; C D
 
Theoremdecmul1c 9407 The product of a numeral with a number (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.)
 |-  P  e.  NN0   &    |-  A  e.  NN0   &    |-  B  e.  NN0   &    |-  N  = ; A B   &    |-  D  e.  NN0   &    |-  E  e.  NN0   &    |-  ( ( A  x.  P )  +  E )  =  C   &    |-  ( B  x.  P )  = ; E D   =>    |-  ( N  x.  P )  = ; C D
 
Theoremdecmul2c 9408 The product of a numeral with a number (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.)
 |-  P  e.  NN0   &    |-  A  e.  NN0   &    |-  B  e.  NN0   &    |-  N  = ; A B   &    |-  D  e.  NN0   &    |-  E  e.  NN0   &    |-  ( ( P  x.  A )  +  E )  =  C   &    |-  ( P  x.  B )  = ; E D   =>    |-  ( P  x.  N )  = ; C D
 
Theoremdecmulnc 9409 The product of a numeral with a number (no carry). (Contributed by AV, 15-Jun-2021.)
 |-  N  e.  NN0   &    |-  A  e.  NN0   &    |-  B  e.  NN0   =>    |-  ( N  x. ; A B )  = ; ( N  x.  A ) ( N  x.  B )
 
Theorem11multnc 9410 The product of 11 (as numeral) with a number (no carry). (Contributed by AV, 15-Jun-2021.)
 |-  N  e.  NN0   =>    |-  ( N  x. ; 1 1 )  = ; N N
 
Theoremdecmul10add 9411 A multiplication of a number and a numeral expressed as addition with first summand as multiple of 10. (Contributed by AV, 22-Jul-2021.) (Revised by AV, 6-Sep-2021.)
 |-  A  e.  NN0   &    |-  B  e.  NN0   &    |-  M  e.  NN0   &    |-  E  =  ( M  x.  A )   &    |-  F  =  ( M  x.  B )   =>    |-  ( M  x. ; A B )  =  (; E 0  +  F )
 
Theorem6p5lem 9412 Lemma for 6p5e11 9415 and related theorems. (Contributed by Mario Carneiro, 19-Apr-2015.)
 |-  A  e.  NN0   &    |-  D  e.  NN0   &    |-  E  e.  NN0   &    |-  B  =  ( D  +  1 )   &    |-  C  =  ( E  +  1 )   &    |-  ( A  +  D )  = ; 1 E   =>    |-  ( A  +  B )  = ; 1 C
 
Theorem5p5e10 9413 5 + 5 = 10. (Contributed by NM, 5-Feb-2007.) (Revised by Stanislas Polu, 7-Apr-2020.) (Revised by AV, 6-Sep-2021.)
 |-  ( 5  +  5 )  = ; 1 0
 
Theorem6p4e10 9414 6 + 4 = 10. (Contributed by NM, 5-Feb-2007.) (Revised by Stanislas Polu, 7-Apr-2020.) (Revised by AV, 6-Sep-2021.)
 |-  ( 6  +  4 )  = ; 1 0
 
Theorem6p5e11 9415 6 + 5 = 11. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.)
 |-  ( 6  +  5 )  = ; 1 1
 
Theorem6p6e12 9416 6 + 6 = 12. (Contributed by Mario Carneiro, 19-Apr-2015.)
 |-  ( 6  +  6 )  = ; 1 2
 
Theorem7p3e10 9417 7 + 3 = 10. (Contributed by NM, 5-Feb-2007.) (Revised by Stanislas Polu, 7-Apr-2020.) (Revised by AV, 6-Sep-2021.)
 |-  ( 7  +  3 )  = ; 1 0
 
Theorem7p4e11 9418 7 + 4 = 11. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.)
 |-  ( 7  +  4 )  = ; 1 1
 
Theorem7p5e12 9419 7 + 5 = 12. (Contributed by Mario Carneiro, 19-Apr-2015.)
 |-  ( 7  +  5 )  = ; 1 2
 
Theorem7p6e13 9420 7 + 6 = 13. (Contributed by Mario Carneiro, 19-Apr-2015.)
 |-  ( 7  +  6 )  = ; 1 3
 
Theorem7p7e14 9421 7 + 7 = 14. (Contributed by Mario Carneiro, 19-Apr-2015.)
 |-  ( 7  +  7 )  = ; 1 4
 
Theorem8p2e10 9422 8 + 2 = 10. (Contributed by NM, 5-Feb-2007.) (Revised by Stanislas Polu, 7-Apr-2020.) (Revised by AV, 6-Sep-2021.)
 |-  ( 8  +  2 )  = ; 1 0
 
Theorem8p3e11 9423 8 + 3 = 11. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.)
 |-  ( 8  +  3 )  = ; 1 1
 
Theorem8p4e12 9424 8 + 4 = 12. (Contributed by Mario Carneiro, 19-Apr-2015.)
 |-  ( 8  +  4 )  = ; 1 2
 
Theorem8p5e13 9425 8 + 5 = 13. (Contributed by Mario Carneiro, 19-Apr-2015.)
 |-  ( 8  +  5 )  = ; 1 3
 
Theorem8p6e14 9426 8 + 6 = 14. (Contributed by Mario Carneiro, 19-Apr-2015.)
 |-  ( 8  +  6 )  = ; 1 4
 
Theorem8p7e15 9427 8 + 7 = 15. (Contributed by Mario Carneiro, 19-Apr-2015.)
 |-  ( 8  +  7 )  = ; 1 5
 
Theorem8p8e16 9428 8 + 8 = 16. (Contributed by Mario Carneiro, 19-Apr-2015.)
 |-  ( 8  +  8 )  = ; 1 6
 
Theorem9p2e11 9429 9 + 2 = 11. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.)
 |-  ( 9  +  2 )  = ; 1 1
 
Theorem9p3e12 9430 9 + 3 = 12. (Contributed by Mario Carneiro, 19-Apr-2015.)
 |-  ( 9  +  3 )  = ; 1 2
 
Theorem9p4e13 9431 9 + 4 = 13. (Contributed by Mario Carneiro, 19-Apr-2015.)
 |-  ( 9  +  4 )  = ; 1 3
 
Theorem9p5e14 9432 9 + 5 = 14. (Contributed by Mario Carneiro, 19-Apr-2015.)
 |-  ( 9  +  5 )  = ; 1 4
 
Theorem9p6e15 9433 9 + 6 = 15. (Contributed by Mario Carneiro, 19-Apr-2015.)
 |-  ( 9  +  6 )  = ; 1 5
 
Theorem9p7e16 9434 9 + 7 = 16. (Contributed by Mario Carneiro, 19-Apr-2015.)
 |-  ( 9  +  7 )  = ; 1 6
 
Theorem9p8e17 9435 9 + 8 = 17. (Contributed by Mario Carneiro, 19-Apr-2015.)
 |-  ( 9  +  8 )  = ; 1 7
 
Theorem9p9e18 9436 9 + 9 = 18. (Contributed by Mario Carneiro, 19-Apr-2015.)
 |-  ( 9  +  9 )  = ; 1 8
 
Theorem10p10e20 9437 10 + 10 = 20. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.)
 |-  (; 1 0  + ; 1 0 )  = ; 2
 0
 
Theorem10m1e9 9438 10 - 1 = 9. (Contributed by AV, 6-Sep-2021.)
 |-  (; 1 0  -  1
 )  =  9
 
Theorem4t3lem 9439 Lemma for 4t3e12 9440 and related theorems. (Contributed by Mario Carneiro, 19-Apr-2015.)
 |-  A  e.  NN0   &    |-  B  e.  NN0   &    |-  C  =  ( B  +  1 )   &    |-  ( A  x.  B )  =  D   &    |-  ( D  +  A )  =  E   =>    |-  ( A  x.  C )  =  E
 
Theorem4t3e12 9440 4 times 3 equals 12. (Contributed by Mario Carneiro, 19-Apr-2015.)
 |-  ( 4  x.  3
 )  = ; 1 2
 
Theorem4t4e16 9441 4 times 4 equals 16. (Contributed by Mario Carneiro, 19-Apr-2015.)
 |-  ( 4  x.  4
 )  = ; 1 6
 
Theorem5t2e10 9442 5 times 2 equals 10. (Contributed by NM, 5-Feb-2007.) (Revised by AV, 4-Sep-2021.)
 |-  ( 5  x.  2
 )  = ; 1 0
 
Theorem5t3e15 9443 5 times 3 equals 15. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.)
 |-  ( 5  x.  3
 )  = ; 1 5
 
Theorem5t4e20 9444 5 times 4 equals 20. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.)
 |-  ( 5  x.  4
 )  = ; 2 0
 
Theorem5t5e25 9445 5 times 5 equals 25. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.)
 |-  ( 5  x.  5
 )  = ; 2 5
 
Theorem6t2e12 9446 6 times 2 equals 12. (Contributed by Mario Carneiro, 19-Apr-2015.)
 |-  ( 6  x.  2
 )  = ; 1 2
 
Theorem6t3e18 9447 6 times 3 equals 18. (Contributed by Mario Carneiro, 19-Apr-2015.)
 |-  ( 6  x.  3
 )  = ; 1 8
 
Theorem6t4e24 9448 6 times 4 equals 24. (Contributed by Mario Carneiro, 19-Apr-2015.)
 |-  ( 6  x.  4
 )  = ; 2 4
 
Theorem6t5e30 9449 6 times 5 equals 30. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.)
 |-  ( 6  x.  5
 )  = ; 3 0
 
Theorem6t6e36 9450 6 times 6 equals 36. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.)
 |-  ( 6  x.  6
 )  = ; 3 6
 
Theorem7t2e14 9451 7 times 2 equals 14. (Contributed by Mario Carneiro, 19-Apr-2015.)
 |-  ( 7  x.  2
 )  = ; 1 4
 
Theorem7t3e21 9452 7 times 3 equals 21. (Contributed by Mario Carneiro, 19-Apr-2015.)
 |-  ( 7  x.  3
 )  = ; 2 1
 
Theorem7t4e28 9453 7 times 4 equals 28. (Contributed by Mario Carneiro, 19-Apr-2015.)
 |-  ( 7  x.  4
 )  = ; 2 8
 
Theorem7t5e35 9454 7 times 5 equals 35. (Contributed by Mario Carneiro, 19-Apr-2015.)
 |-  ( 7  x.  5
 )  = ; 3 5
 
Theorem7t6e42 9455 7 times 6 equals 42. (Contributed by Mario Carneiro, 19-Apr-2015.)
 |-  ( 7  x.  6
 )  = ; 4 2
 
Theorem7t7e49 9456 7 times 7 equals 49. (Contributed by Mario Carneiro, 19-Apr-2015.)
 |-  ( 7  x.  7
 )  = ; 4 9
 
Theorem8t2e16 9457 8 times 2 equals 16. (Contributed by Mario Carneiro, 19-Apr-2015.)
 |-  ( 8  x.  2
 )  = ; 1 6
 
Theorem8t3e24 9458 8 times 3 equals 24. (Contributed by Mario Carneiro, 19-Apr-2015.)
 |-  ( 8  x.  3
 )  = ; 2 4
 
Theorem8t4e32 9459 8 times 4 equals 32. (Contributed by Mario Carneiro, 19-Apr-2015.)
 |-  ( 8  x.  4
 )  = ; 3 2
 
Theorem8t5e40 9460 8 times 5 equals 40. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.)
 |-  ( 8  x.  5
 )  = ; 4 0
 
Theorem8t6e48 9461 8 times 6 equals 48. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.)
 |-  ( 8  x.  6
 )  = ; 4 8
 
Theorem8t7e56 9462 8 times 7 equals 56. (Contributed by Mario Carneiro, 19-Apr-2015.)
 |-  ( 8  x.  7
 )  = ; 5 6
 
Theorem8t8e64 9463 8 times 8 equals 64. (Contributed by Mario Carneiro, 19-Apr-2015.)
 |-  ( 8  x.  8
 )  = ; 6 4
 
Theorem9t2e18 9464 9 times 2 equals 18. (Contributed by Mario Carneiro, 19-Apr-2015.)
 |-  ( 9  x.  2
 )  = ; 1 8
 
Theorem9t3e27 9465 9 times 3 equals 27. (Contributed by Mario Carneiro, 19-Apr-2015.)
 |-  ( 9  x.  3
 )  = ; 2 7
 
Theorem9t4e36 9466 9 times 4 equals 36. (Contributed by Mario Carneiro, 19-Apr-2015.)
 |-  ( 9  x.  4
 )  = ; 3 6
 
Theorem9t5e45 9467 9 times 5 equals 45. (Contributed by Mario Carneiro, 19-Apr-2015.)
 |-  ( 9  x.  5
 )  = ; 4 5
 
Theorem9t6e54 9468 9 times 6 equals 54. (Contributed by Mario Carneiro, 19-Apr-2015.)
 |-  ( 9  x.  6
 )  = ; 5 4
 
Theorem9t7e63 9469 9 times 7 equals 63. (Contributed by Mario Carneiro, 19-Apr-2015.)
 |-  ( 9  x.  7
 )  = ; 6 3
 
Theorem9t8e72 9470 9 times 8 equals 72. (Contributed by Mario Carneiro, 19-Apr-2015.)
 |-  ( 9  x.  8
 )  = ; 7 2
 
Theorem9t9e81 9471 9 times 9 equals 81. (Contributed by Mario Carneiro, 19-Apr-2015.)
 |-  ( 9  x.  9
 )  = ; 8 1
 
Theorem9t11e99 9472 9 times 11 equals 99. (Contributed by AV, 14-Jun-2021.) (Revised by AV, 6-Sep-2021.)
 |-  ( 9  x. ; 1 1 )  = ; 9
 9
 
Theorem9lt10 9473 9 is less than 10. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by AV, 8-Sep-2021.)
 |-  9  < ; 1 0
 
Theorem8lt10 9474 8 is less than 10. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by AV, 8-Sep-2021.)
 |-  8  < ; 1 0
 
Theorem7lt10 9475 7 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015.) (Revised by AV, 8-Sep-2021.)
 |-  7  < ; 1 0
 
Theorem6lt10 9476 6 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015.) (Revised by AV, 8-Sep-2021.)
 |-  6  < ; 1 0
 
Theorem5lt10 9477 5 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015.) (Revised by AV, 8-Sep-2021.)
 |-  5  < ; 1 0
 
Theorem4lt10 9478 4 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015.) (Revised by AV, 8-Sep-2021.)
 |-  4  < ; 1 0
 
Theorem3lt10 9479 3 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015.) (Revised by AV, 8-Sep-2021.)
 |-  3  < ; 1 0
 
Theorem2lt10 9480 2 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015.) (Revised by AV, 8-Sep-2021.)
 |-  2  < ; 1 0
 
Theorem1lt10 9481 1 is less than 10. (Contributed by NM, 7-Nov-2012.) (Revised by Mario Carneiro, 9-Mar-2015.) (Revised by AV, 8-Sep-2021.)
 |-  1  < ; 1 0
 
Theoremdecbin0 9482 Decompose base 4 into base 2. (Contributed by Mario Carneiro, 18-Feb-2014.)
 |-  A  e.  NN0   =>    |-  ( 4  x.  A )  =  ( 2  x.  ( 2  x.  A ) )
 
Theoremdecbin2 9483 Decompose base 4 into base 2. (Contributed by Mario Carneiro, 18-Feb-2014.)
 |-  A  e.  NN0   =>    |-  ( ( 4  x.  A )  +  2 )  =  ( 2  x.  ( ( 2  x.  A )  +  1 ) )
 
Theoremdecbin3 9484 Decompose base 4 into base 2. (Contributed by Mario Carneiro, 18-Feb-2014.)
 |-  A  e.  NN0   =>    |-  ( ( 4  x.  A )  +  3 )  =  ( ( 2  x.  ( ( 2  x.  A )  +  1 ) )  +  1 )
 
Theoremhalfthird 9485 Half minus a third. (Contributed by Scott Fenton, 8-Jul-2015.)
 |-  ( ( 1  / 
 2 )  -  (
 1  /  3 )
 )  =  ( 1 
 /  6 )
 
Theorem5recm6rec 9486 One fifth minus one sixth. (Contributed by Scott Fenton, 9-Jan-2017.)
 |-  ( ( 1  / 
 5 )  -  (
 1  /  6 )
 )  =  ( 1 
 / ; 3 0 )
 
4.4.11  Upper sets of integers
 
Syntaxcuz 9487 Extend class notation with the upper integer function. Read " ZZ>= `  M " as "the set of integers greater than or equal to  M".
 class  ZZ>=
 
Definitiondf-uz 9488* Define a function whose value at  j is the semi-infinite set of contiguous integers starting at  j, which we will also call the upper integers starting at  j. Read " ZZ>= `  M " as "the set of integers greater than or equal to  M". See uzval 9489 for its value, uzssz 9506 for its relationship to  ZZ, nnuz 9522 and nn0uz 9521 for its relationships to  NN and  NN0, and eluz1 9491 and eluz2 9493 for its membership relations. (Contributed by NM, 5-Sep-2005.)
 |- 
 ZZ>=  =  ( j  e. 
 ZZ  |->  { k  e.  ZZ  |  j  <_  k }
 )
 
Theoremuzval 9489* The value of the upper integers function. (Contributed by NM, 5-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.)
 |-  ( N  e.  ZZ  ->  ( ZZ>= `  N )  =  { k  e.  ZZ  |  N  <_  k }
 )
 
Theoremuzf 9490 The domain and range of the upper integers function. (Contributed by Scott Fenton, 8-Aug-2013.) (Revised by Mario Carneiro, 3-Nov-2013.)
 |- 
 ZZ>= : ZZ --> ~P ZZ
 
Theoremeluz1 9491 Membership in the upper set of integers starting at  M. (Contributed by NM, 5-Sep-2005.)
 |-  ( M  e.  ZZ  ->  ( N  e.  ( ZZ>=
 `  M )  <->  ( N  e.  ZZ  /\  M  <_  N ) ) )
 
Theoremeluzel2 9492 Implication of membership in an upper set of integers. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.)
 |-  ( N  e.  ( ZZ>=
 `  M )  ->  M  e.  ZZ )
 
Theoremeluz2 9493 Membership in an upper set of integers. We use the fact that a function's value (under our function value definition) is empty outside of its domain to show  M  e.  ZZ. (Contributed by NM, 5-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.)
 |-  ( N  e.  ( ZZ>=
 `  M )  <->  ( M  e.  ZZ  /\  N  e.  ZZ  /\  M  <_  N )
 )
 
Theoremeluz1i 9494 Membership in an upper set of integers. (Contributed by NM, 5-Sep-2005.)
 |-  M  e.  ZZ   =>    |-  ( N  e.  ( ZZ>= `  M )  <->  ( N  e.  ZZ  /\  M  <_  N ) )
 
Theoremeluzuzle 9495 An integer in an upper set of integers is an element of an upper set of integers with a smaller bound. (Contributed by Alexander van der Vekens, 17-Jun-2018.)
 |-  ( ( B  e.  ZZ  /\  B  <_  A )  ->  ( C  e.  ( ZZ>= `  A )  ->  C  e.  ( ZZ>= `  B ) ) )
 
Theoremeluzelz 9496 A member of an upper set of integers is an integer. (Contributed by NM, 6-Sep-2005.)
 |-  ( N  e.  ( ZZ>=
 `  M )  ->  N  e.  ZZ )
 
Theoremeluzelre 9497 A member of an upper set of integers is a real. (Contributed by Mario Carneiro, 31-Aug-2013.)
 |-  ( N  e.  ( ZZ>=
 `  M )  ->  N  e.  RR )
 
Theoremeluzelcn 9498 A member of an upper set of integers is a complex number. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
 |-  ( N  e.  ( ZZ>=
 `  M )  ->  N  e.  CC )
 
Theoremeluzle 9499 Implication of membership in an upper set of integers. (Contributed by NM, 6-Sep-2005.)
 |-  ( N  e.  ( ZZ>=
 `  M )  ->  M  <_  N )
 
Theoremeluz 9500 Membership in an upper set of integers. (Contributed by NM, 2-Oct-2005.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  e.  ( ZZ>= `  M )  <->  M 
 <_  N ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14113
  Copyright terms: Public domain < Previous  Next >