ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  arisum2 Unicode version

Theorem arisum2 11683
Description: Arithmetic series sum of the first  N nonnegative integers. (Contributed by Mario Carneiro, 17-Apr-2015.) (Proof shortened by AV, 2-Aug-2021.)
Assertion
Ref Expression
arisum2  |-  ( N  e.  NN0  ->  sum_ k  e.  ( 0 ... ( N  -  1 ) ) k  =  ( ( ( N ^
2 )  -  N
)  /  2 ) )
Distinct variable group:    k, N

Proof of Theorem arisum2
StepHypRef Expression
1 elnn0 9270 . 2  |-  ( N  e.  NN0  <->  ( N  e.  NN  \/  N  =  0 ) )
2 nnm1nn0 9309 . . . . . 6  |-  ( N  e.  NN  ->  ( N  -  1 )  e.  NN0 )
3 nn0uz 9655 . . . . . 6  |-  NN0  =  ( ZZ>= `  0 )
42, 3eleqtrdi 2289 . . . . 5  |-  ( N  e.  NN  ->  ( N  -  1 )  e.  ( ZZ>= `  0
) )
5 elfznn0 10208 . . . . . . 7  |-  ( k  e.  ( 0 ... ( N  -  1 ) )  ->  k  e.  NN0 )
65adantl 277 . . . . . 6  |-  ( ( N  e.  NN  /\  k  e.  ( 0 ... ( N  - 
1 ) ) )  ->  k  e.  NN0 )
76nn0cnd 9323 . . . . 5  |-  ( ( N  e.  NN  /\  k  e.  ( 0 ... ( N  - 
1 ) ) )  ->  k  e.  CC )
8 id 19 . . . . 5  |-  ( k  =  0  ->  k  =  0 )
94, 7, 8fsum1p 11602 . . . 4  |-  ( N  e.  NN  ->  sum_ k  e.  ( 0 ... ( N  -  1 ) ) k  =  ( 0  +  sum_ k  e.  ( ( 0  +  1 ) ... ( N  -  1 ) ) k ) )
10 1e0p1 9517 . . . . . . . . 9  |-  1  =  ( 0  +  1 )
1110oveq1i 5935 . . . . . . . 8  |-  ( 1 ... ( N  - 
1 ) )  =  ( ( 0  +  1 ) ... ( N  -  1 ) )
1211sumeq1i 11547 . . . . . . 7  |-  sum_ k  e.  ( 1 ... ( N  -  1 ) ) k  =  sum_ k  e.  ( (
0  +  1 ) ... ( N  - 
1 ) ) k
1312oveq2i 5936 . . . . . 6  |-  ( 0  +  sum_ k  e.  ( 1 ... ( N  -  1 ) ) k )  =  ( 0  +  sum_ k  e.  ( ( 0  +  1 ) ... ( N  -  1 ) ) k )
14 1zzd 9372 . . . . . . . . 9  |-  ( N  e.  NN  ->  1  e.  ZZ )
152nn0zd 9465 . . . . . . . . 9  |-  ( N  e.  NN  ->  ( N  -  1 )  e.  ZZ )
1614, 15fzfigd 10542 . . . . . . . 8  |-  ( N  e.  NN  ->  (
1 ... ( N  - 
1 ) )  e. 
Fin )
17 elfznn 10148 . . . . . . . . . 10  |-  ( k  e.  ( 1 ... ( N  -  1 ) )  ->  k  e.  NN )
1817adantl 277 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  k  e.  ( 1 ... ( N  - 
1 ) ) )  ->  k  e.  NN )
1918nncnd 9023 . . . . . . . 8  |-  ( ( N  e.  NN  /\  k  e.  ( 1 ... ( N  - 
1 ) ) )  ->  k  e.  CC )
2016, 19fsumcl 11584 . . . . . . 7  |-  ( N  e.  NN  ->  sum_ k  e.  ( 1 ... ( N  -  1 ) ) k  e.  CC )
2120addlidd 8195 . . . . . 6  |-  ( N  e.  NN  ->  (
0  +  sum_ k  e.  ( 1 ... ( N  -  1 ) ) k )  = 
sum_ k  e.  ( 1 ... ( N  -  1 ) ) k )
2213, 21eqtr3id 2243 . . . . 5  |-  ( N  e.  NN  ->  (
0  +  sum_ k  e.  ( ( 0  +  1 ) ... ( N  -  1 ) ) k )  = 
sum_ k  e.  ( 1 ... ( N  -  1 ) ) k )
23 arisum 11682 . . . . . . 7  |-  ( ( N  -  1 )  e.  NN0  ->  sum_ k  e.  ( 1 ... ( N  -  1 ) ) k  =  ( ( ( ( N  -  1 ) ^
2 )  +  ( N  -  1 ) )  /  2 ) )
242, 23syl 14 . . . . . 6  |-  ( N  e.  NN  ->  sum_ k  e.  ( 1 ... ( N  -  1 ) ) k  =  ( ( ( ( N  -  1 ) ^
2 )  +  ( N  -  1 ) )  /  2 ) )
25 nncn 9017 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  N  e.  CC )
26252timesd 9253 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  (
2  x.  N )  =  ( N  +  N ) )
2726oveq2d 5941 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  (
( N ^ 2 )  -  ( 2  x.  N ) )  =  ( ( N ^ 2 )  -  ( N  +  N
) ) )
2825sqcld 10782 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  ( N ^ 2 )  e.  CC )
2928, 25, 25subsub4d 8387 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  (
( ( N ^
2 )  -  N
)  -  N )  =  ( ( N ^ 2 )  -  ( N  +  N
) ) )
3027, 29eqtr4d 2232 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  (
( N ^ 2 )  -  ( 2  x.  N ) )  =  ( ( ( N ^ 2 )  -  N )  -  N ) )
3130oveq1d 5940 . . . . . . . . . 10  |-  ( N  e.  NN  ->  (
( ( N ^
2 )  -  (
2  x.  N ) )  +  1 )  =  ( ( ( ( N ^ 2 )  -  N )  -  N )  +  1 ) )
32 binom2sub1 10765 . . . . . . . . . . 11  |-  ( N  e.  CC  ->  (
( N  -  1 ) ^ 2 )  =  ( ( ( N ^ 2 )  -  ( 2  x.  N ) )  +  1 ) )
3325, 32syl 14 . . . . . . . . . 10  |-  ( N  e.  NN  ->  (
( N  -  1 ) ^ 2 )  =  ( ( ( N ^ 2 )  -  ( 2  x.  N ) )  +  1 ) )
3428, 25subcld 8356 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  (
( N ^ 2 )  -  N )  e.  CC )
35 1cnd 8061 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  1  e.  CC )
3634, 25, 35subsubd 8384 . . . . . . . . . 10  |-  ( N  e.  NN  ->  (
( ( N ^
2 )  -  N
)  -  ( N  -  1 ) )  =  ( ( ( ( N ^ 2 )  -  N )  -  N )  +  1 ) )
3731, 33, 363eqtr4d 2239 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
( N  -  1 ) ^ 2 )  =  ( ( ( N ^ 2 )  -  N )  -  ( N  -  1
) ) )
3837oveq1d 5940 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( ( N  - 
1 ) ^ 2 )  +  ( N  -  1 ) )  =  ( ( ( ( N ^ 2 )  -  N )  -  ( N  - 
1 ) )  +  ( N  -  1 ) ) )
39 ax-1cn 7991 . . . . . . . . . 10  |-  1  e.  CC
40 subcl 8244 . . . . . . . . . 10  |-  ( ( N  e.  CC  /\  1  e.  CC )  ->  ( N  -  1 )  e.  CC )
4125, 39, 40sylancl 413 . . . . . . . . 9  |-  ( N  e.  NN  ->  ( N  -  1 )  e.  CC )
4234, 41npcand 8360 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( ( ( N ^ 2 )  -  N )  -  ( N  -  1 ) )  +  ( N  -  1 ) )  =  ( ( N ^ 2 )  -  N ) )
4338, 42eqtrd 2229 . . . . . . 7  |-  ( N  e.  NN  ->  (
( ( N  - 
1 ) ^ 2 )  +  ( N  -  1 ) )  =  ( ( N ^ 2 )  -  N ) )
4443oveq1d 5940 . . . . . 6  |-  ( N  e.  NN  ->  (
( ( ( N  -  1 ) ^
2 )  +  ( N  -  1 ) )  /  2 )  =  ( ( ( N ^ 2 )  -  N )  / 
2 ) )
4524, 44eqtrd 2229 . . . . 5  |-  ( N  e.  NN  ->  sum_ k  e.  ( 1 ... ( N  -  1 ) ) k  =  ( ( ( N ^
2 )  -  N
)  /  2 ) )
4622, 45eqtrd 2229 . . . 4  |-  ( N  e.  NN  ->  (
0  +  sum_ k  e.  ( ( 0  +  1 ) ... ( N  -  1 ) ) k )  =  ( ( ( N ^ 2 )  -  N )  /  2
) )
479, 46eqtrd 2229 . . 3  |-  ( N  e.  NN  ->  sum_ k  e.  ( 0 ... ( N  -  1 ) ) k  =  ( ( ( N ^
2 )  -  N
)  /  2 ) )
48 oveq1 5932 . . . . . . . 8  |-  ( N  =  0  ->  ( N  -  1 )  =  ( 0  -  1 ) )
4948oveq2d 5941 . . . . . . 7  |-  ( N  =  0  ->  (
0 ... ( N  - 
1 ) )  =  ( 0 ... (
0  -  1 ) ) )
50 0re 8045 . . . . . . . . 9  |-  0  e.  RR
51 ltm1 8892 . . . . . . . . 9  |-  ( 0  e.  RR  ->  (
0  -  1 )  <  0 )
5250, 51ax-mp 5 . . . . . . . 8  |-  ( 0  -  1 )  <  0
53 0z 9356 . . . . . . . . 9  |-  0  e.  ZZ
54 peano2zm 9383 . . . . . . . . . 10  |-  ( 0  e.  ZZ  ->  (
0  -  1 )  e.  ZZ )
5553, 54ax-mp 5 . . . . . . . . 9  |-  ( 0  -  1 )  e.  ZZ
56 fzn 10136 . . . . . . . . 9  |-  ( ( 0  e.  ZZ  /\  ( 0  -  1 )  e.  ZZ )  ->  ( ( 0  -  1 )  <  0  <->  ( 0 ... ( 0  -  1 ) )  =  (/) ) )
5753, 55, 56mp2an 426 . . . . . . . 8  |-  ( ( 0  -  1 )  <  0  <->  ( 0 ... ( 0  -  1 ) )  =  (/) )
5852, 57mpbi 145 . . . . . . 7  |-  ( 0 ... ( 0  -  1 ) )  =  (/)
5949, 58eqtrdi 2245 . . . . . 6  |-  ( N  =  0  ->  (
0 ... ( N  - 
1 ) )  =  (/) )
6059sumeq1d 11550 . . . . 5  |-  ( N  =  0  ->  sum_ k  e.  ( 0 ... ( N  -  1 ) ) k  =  sum_ k  e.  (/)  k )
61 sum0 11572 . . . . 5  |-  sum_ k  e.  (/)  k  =  0
6260, 61eqtrdi 2245 . . . 4  |-  ( N  =  0  ->  sum_ k  e.  ( 0 ... ( N  -  1 ) ) k  =  0 )
63 sq0i 10742 . . . . . . . 8  |-  ( N  =  0  ->  ( N ^ 2 )  =  0 )
64 id 19 . . . . . . . 8  |-  ( N  =  0  ->  N  =  0 )
6563, 64oveq12d 5943 . . . . . . 7  |-  ( N  =  0  ->  (
( N ^ 2 )  -  N )  =  ( 0  -  0 ) )
66 0m0e0 9121 . . . . . . 7  |-  ( 0  -  0 )  =  0
6765, 66eqtrdi 2245 . . . . . 6  |-  ( N  =  0  ->  (
( N ^ 2 )  -  N )  =  0 )
6867oveq1d 5940 . . . . 5  |-  ( N  =  0  ->  (
( ( N ^
2 )  -  N
)  /  2 )  =  ( 0  / 
2 ) )
69 2cn 9080 . . . . . 6  |-  2  e.  CC
70 2ap0 9102 . . . . . 6  |-  2 #  0
7169, 70div0api 8792 . . . . 5  |-  ( 0  /  2 )  =  0
7268, 71eqtrdi 2245 . . . 4  |-  ( N  =  0  ->  (
( ( N ^
2 )  -  N
)  /  2 )  =  0 )
7362, 72eqtr4d 2232 . . 3  |-  ( N  =  0  ->  sum_ k  e.  ( 0 ... ( N  -  1 ) ) k  =  ( ( ( N ^
2 )  -  N
)  /  2 ) )
7447, 73jaoi 717 . 2  |-  ( ( N  e.  NN  \/  N  =  0 )  ->  sum_ k  e.  ( 0 ... ( N  -  1 ) ) k  =  ( ( ( N ^ 2 )  -  N )  /  2 ) )
751, 74sylbi 121 1  |-  ( N  e.  NN0  ->  sum_ k  e.  ( 0 ... ( N  -  1 ) ) k  =  ( ( ( N ^
2 )  -  N
)  /  2 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    = wceq 1364    e. wcel 2167   (/)c0 3451   class class class wbr 4034   ` cfv 5259  (class class class)co 5925   CCcc 7896   RRcr 7897   0cc0 7898   1c1 7899    + caddc 7901    x. cmul 7903    < clt 8080    - cmin 8216    / cdiv 8718   NNcn 9009   2c2 9060   NN0cn0 9268   ZZcz 9345   ZZ>=cuz 9620   ...cfz 10102   ^cexp 10649   sum_csu 11537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-mulrcl 7997  ax-addcom 7998  ax-mulcom 7999  ax-addass 8000  ax-mulass 8001  ax-distr 8002  ax-i2m1 8003  ax-0lt1 8004  ax-1rid 8005  ax-0id 8006  ax-rnegex 8007  ax-precex 8008  ax-cnre 8009  ax-pre-ltirr 8010  ax-pre-ltwlin 8011  ax-pre-lttrn 8012  ax-pre-apti 8013  ax-pre-ltadd 8014  ax-pre-mulgt0 8015  ax-pre-mulext 8016  ax-arch 8017  ax-caucvg 8018
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-frec 6458  df-1o 6483  df-oadd 6487  df-er 6601  df-en 6809  df-dom 6810  df-fin 6811  df-pnf 8082  df-mnf 8083  df-xr 8084  df-ltxr 8085  df-le 8086  df-sub 8218  df-neg 8219  df-reap 8621  df-ap 8628  df-div 8719  df-inn 9010  df-2 9068  df-3 9069  df-4 9070  df-n0 9269  df-z 9346  df-uz 9621  df-q 9713  df-rp 9748  df-fz 10103  df-fzo 10237  df-seqfrec 10559  df-exp 10650  df-fac 10837  df-bc 10859  df-ihash 10887  df-cj 11026  df-re 11027  df-im 11028  df-rsqrt 11182  df-abs 11183  df-clim 11463  df-sumdc 11538
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator