ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  arisum2 Unicode version

Theorem arisum2 11645
Description: Arithmetic series sum of the first  N nonnegative integers. (Contributed by Mario Carneiro, 17-Apr-2015.) (Proof shortened by AV, 2-Aug-2021.)
Assertion
Ref Expression
arisum2  |-  ( N  e.  NN0  ->  sum_ k  e.  ( 0 ... ( N  -  1 ) ) k  =  ( ( ( N ^
2 )  -  N
)  /  2 ) )
Distinct variable group:    k, N

Proof of Theorem arisum2
StepHypRef Expression
1 elnn0 9245 . 2  |-  ( N  e.  NN0  <->  ( N  e.  NN  \/  N  =  0 ) )
2 nnm1nn0 9284 . . . . . 6  |-  ( N  e.  NN  ->  ( N  -  1 )  e.  NN0 )
3 nn0uz 9630 . . . . . 6  |-  NN0  =  ( ZZ>= `  0 )
42, 3eleqtrdi 2286 . . . . 5  |-  ( N  e.  NN  ->  ( N  -  1 )  e.  ( ZZ>= `  0
) )
5 elfznn0 10183 . . . . . . 7  |-  ( k  e.  ( 0 ... ( N  -  1 ) )  ->  k  e.  NN0 )
65adantl 277 . . . . . 6  |-  ( ( N  e.  NN  /\  k  e.  ( 0 ... ( N  - 
1 ) ) )  ->  k  e.  NN0 )
76nn0cnd 9298 . . . . 5  |-  ( ( N  e.  NN  /\  k  e.  ( 0 ... ( N  - 
1 ) ) )  ->  k  e.  CC )
8 id 19 . . . . 5  |-  ( k  =  0  ->  k  =  0 )
94, 7, 8fsum1p 11564 . . . 4  |-  ( N  e.  NN  ->  sum_ k  e.  ( 0 ... ( N  -  1 ) ) k  =  ( 0  +  sum_ k  e.  ( ( 0  +  1 ) ... ( N  -  1 ) ) k ) )
10 1e0p1 9492 . . . . . . . . 9  |-  1  =  ( 0  +  1 )
1110oveq1i 5929 . . . . . . . 8  |-  ( 1 ... ( N  - 
1 ) )  =  ( ( 0  +  1 ) ... ( N  -  1 ) )
1211sumeq1i 11509 . . . . . . 7  |-  sum_ k  e.  ( 1 ... ( N  -  1 ) ) k  =  sum_ k  e.  ( (
0  +  1 ) ... ( N  - 
1 ) ) k
1312oveq2i 5930 . . . . . 6  |-  ( 0  +  sum_ k  e.  ( 1 ... ( N  -  1 ) ) k )  =  ( 0  +  sum_ k  e.  ( ( 0  +  1 ) ... ( N  -  1 ) ) k )
14 1zzd 9347 . . . . . . . . 9  |-  ( N  e.  NN  ->  1  e.  ZZ )
152nn0zd 9440 . . . . . . . . 9  |-  ( N  e.  NN  ->  ( N  -  1 )  e.  ZZ )
1614, 15fzfigd 10505 . . . . . . . 8  |-  ( N  e.  NN  ->  (
1 ... ( N  - 
1 ) )  e. 
Fin )
17 elfznn 10123 . . . . . . . . . 10  |-  ( k  e.  ( 1 ... ( N  -  1 ) )  ->  k  e.  NN )
1817adantl 277 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  k  e.  ( 1 ... ( N  - 
1 ) ) )  ->  k  e.  NN )
1918nncnd 8998 . . . . . . . 8  |-  ( ( N  e.  NN  /\  k  e.  ( 1 ... ( N  - 
1 ) ) )  ->  k  e.  CC )
2016, 19fsumcl 11546 . . . . . . 7  |-  ( N  e.  NN  ->  sum_ k  e.  ( 1 ... ( N  -  1 ) ) k  e.  CC )
2120addlidd 8171 . . . . . 6  |-  ( N  e.  NN  ->  (
0  +  sum_ k  e.  ( 1 ... ( N  -  1 ) ) k )  = 
sum_ k  e.  ( 1 ... ( N  -  1 ) ) k )
2213, 21eqtr3id 2240 . . . . 5  |-  ( N  e.  NN  ->  (
0  +  sum_ k  e.  ( ( 0  +  1 ) ... ( N  -  1 ) ) k )  = 
sum_ k  e.  ( 1 ... ( N  -  1 ) ) k )
23 arisum 11644 . . . . . . 7  |-  ( ( N  -  1 )  e.  NN0  ->  sum_ k  e.  ( 1 ... ( N  -  1 ) ) k  =  ( ( ( ( N  -  1 ) ^
2 )  +  ( N  -  1 ) )  /  2 ) )
242, 23syl 14 . . . . . 6  |-  ( N  e.  NN  ->  sum_ k  e.  ( 1 ... ( N  -  1 ) ) k  =  ( ( ( ( N  -  1 ) ^
2 )  +  ( N  -  1 ) )  /  2 ) )
25 nncn 8992 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  N  e.  CC )
26252timesd 9228 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  (
2  x.  N )  =  ( N  +  N ) )
2726oveq2d 5935 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  (
( N ^ 2 )  -  ( 2  x.  N ) )  =  ( ( N ^ 2 )  -  ( N  +  N
) ) )
2825sqcld 10745 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  ( N ^ 2 )  e.  CC )
2928, 25, 25subsub4d 8363 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  (
( ( N ^
2 )  -  N
)  -  N )  =  ( ( N ^ 2 )  -  ( N  +  N
) ) )
3027, 29eqtr4d 2229 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  (
( N ^ 2 )  -  ( 2  x.  N ) )  =  ( ( ( N ^ 2 )  -  N )  -  N ) )
3130oveq1d 5934 . . . . . . . . . 10  |-  ( N  e.  NN  ->  (
( ( N ^
2 )  -  (
2  x.  N ) )  +  1 )  =  ( ( ( ( N ^ 2 )  -  N )  -  N )  +  1 ) )
32 binom2sub1 10728 . . . . . . . . . . 11  |-  ( N  e.  CC  ->  (
( N  -  1 ) ^ 2 )  =  ( ( ( N ^ 2 )  -  ( 2  x.  N ) )  +  1 ) )
3325, 32syl 14 . . . . . . . . . 10  |-  ( N  e.  NN  ->  (
( N  -  1 ) ^ 2 )  =  ( ( ( N ^ 2 )  -  ( 2  x.  N ) )  +  1 ) )
3428, 25subcld 8332 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  (
( N ^ 2 )  -  N )  e.  CC )
35 1cnd 8037 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  1  e.  CC )
3634, 25, 35subsubd 8360 . . . . . . . . . 10  |-  ( N  e.  NN  ->  (
( ( N ^
2 )  -  N
)  -  ( N  -  1 ) )  =  ( ( ( ( N ^ 2 )  -  N )  -  N )  +  1 ) )
3731, 33, 363eqtr4d 2236 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
( N  -  1 ) ^ 2 )  =  ( ( ( N ^ 2 )  -  N )  -  ( N  -  1
) ) )
3837oveq1d 5934 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( ( N  - 
1 ) ^ 2 )  +  ( N  -  1 ) )  =  ( ( ( ( N ^ 2 )  -  N )  -  ( N  - 
1 ) )  +  ( N  -  1 ) ) )
39 ax-1cn 7967 . . . . . . . . . 10  |-  1  e.  CC
40 subcl 8220 . . . . . . . . . 10  |-  ( ( N  e.  CC  /\  1  e.  CC )  ->  ( N  -  1 )  e.  CC )
4125, 39, 40sylancl 413 . . . . . . . . 9  |-  ( N  e.  NN  ->  ( N  -  1 )  e.  CC )
4234, 41npcand 8336 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( ( ( N ^ 2 )  -  N )  -  ( N  -  1 ) )  +  ( N  -  1 ) )  =  ( ( N ^ 2 )  -  N ) )
4338, 42eqtrd 2226 . . . . . . 7  |-  ( N  e.  NN  ->  (
( ( N  - 
1 ) ^ 2 )  +  ( N  -  1 ) )  =  ( ( N ^ 2 )  -  N ) )
4443oveq1d 5934 . . . . . 6  |-  ( N  e.  NN  ->  (
( ( ( N  -  1 ) ^
2 )  +  ( N  -  1 ) )  /  2 )  =  ( ( ( N ^ 2 )  -  N )  / 
2 ) )
4524, 44eqtrd 2226 . . . . 5  |-  ( N  e.  NN  ->  sum_ k  e.  ( 1 ... ( N  -  1 ) ) k  =  ( ( ( N ^
2 )  -  N
)  /  2 ) )
4622, 45eqtrd 2226 . . . 4  |-  ( N  e.  NN  ->  (
0  +  sum_ k  e.  ( ( 0  +  1 ) ... ( N  -  1 ) ) k )  =  ( ( ( N ^ 2 )  -  N )  /  2
) )
479, 46eqtrd 2226 . . 3  |-  ( N  e.  NN  ->  sum_ k  e.  ( 0 ... ( N  -  1 ) ) k  =  ( ( ( N ^
2 )  -  N
)  /  2 ) )
48 oveq1 5926 . . . . . . . 8  |-  ( N  =  0  ->  ( N  -  1 )  =  ( 0  -  1 ) )
4948oveq2d 5935 . . . . . . 7  |-  ( N  =  0  ->  (
0 ... ( N  - 
1 ) )  =  ( 0 ... (
0  -  1 ) ) )
50 0re 8021 . . . . . . . . 9  |-  0  e.  RR
51 ltm1 8867 . . . . . . . . 9  |-  ( 0  e.  RR  ->  (
0  -  1 )  <  0 )
5250, 51ax-mp 5 . . . . . . . 8  |-  ( 0  -  1 )  <  0
53 0z 9331 . . . . . . . . 9  |-  0  e.  ZZ
54 peano2zm 9358 . . . . . . . . . 10  |-  ( 0  e.  ZZ  ->  (
0  -  1 )  e.  ZZ )
5553, 54ax-mp 5 . . . . . . . . 9  |-  ( 0  -  1 )  e.  ZZ
56 fzn 10111 . . . . . . . . 9  |-  ( ( 0  e.  ZZ  /\  ( 0  -  1 )  e.  ZZ )  ->  ( ( 0  -  1 )  <  0  <->  ( 0 ... ( 0  -  1 ) )  =  (/) ) )
5753, 55, 56mp2an 426 . . . . . . . 8  |-  ( ( 0  -  1 )  <  0  <->  ( 0 ... ( 0  -  1 ) )  =  (/) )
5852, 57mpbi 145 . . . . . . 7  |-  ( 0 ... ( 0  -  1 ) )  =  (/)
5949, 58eqtrdi 2242 . . . . . 6  |-  ( N  =  0  ->  (
0 ... ( N  - 
1 ) )  =  (/) )
6059sumeq1d 11512 . . . . 5  |-  ( N  =  0  ->  sum_ k  e.  ( 0 ... ( N  -  1 ) ) k  =  sum_ k  e.  (/)  k )
61 sum0 11534 . . . . 5  |-  sum_ k  e.  (/)  k  =  0
6260, 61eqtrdi 2242 . . . 4  |-  ( N  =  0  ->  sum_ k  e.  ( 0 ... ( N  -  1 ) ) k  =  0 )
63 sq0i 10705 . . . . . . . 8  |-  ( N  =  0  ->  ( N ^ 2 )  =  0 )
64 id 19 . . . . . . . 8  |-  ( N  =  0  ->  N  =  0 )
6563, 64oveq12d 5937 . . . . . . 7  |-  ( N  =  0  ->  (
( N ^ 2 )  -  N )  =  ( 0  -  0 ) )
66 0m0e0 9096 . . . . . . 7  |-  ( 0  -  0 )  =  0
6765, 66eqtrdi 2242 . . . . . 6  |-  ( N  =  0  ->  (
( N ^ 2 )  -  N )  =  0 )
6867oveq1d 5934 . . . . 5  |-  ( N  =  0  ->  (
( ( N ^
2 )  -  N
)  /  2 )  =  ( 0  / 
2 ) )
69 2cn 9055 . . . . . 6  |-  2  e.  CC
70 2ap0 9077 . . . . . 6  |-  2 #  0
7169, 70div0api 8767 . . . . 5  |-  ( 0  /  2 )  =  0
7268, 71eqtrdi 2242 . . . 4  |-  ( N  =  0  ->  (
( ( N ^
2 )  -  N
)  /  2 )  =  0 )
7362, 72eqtr4d 2229 . . 3  |-  ( N  =  0  ->  sum_ k  e.  ( 0 ... ( N  -  1 ) ) k  =  ( ( ( N ^
2 )  -  N
)  /  2 ) )
7447, 73jaoi 717 . 2  |-  ( ( N  e.  NN  \/  N  =  0 )  ->  sum_ k  e.  ( 0 ... ( N  -  1 ) ) k  =  ( ( ( N ^ 2 )  -  N )  /  2 ) )
751, 74sylbi 121 1  |-  ( N  e.  NN0  ->  sum_ k  e.  ( 0 ... ( N  -  1 ) ) k  =  ( ( ( N ^
2 )  -  N
)  /  2 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    = wceq 1364    e. wcel 2164   (/)c0 3447   class class class wbr 4030   ` cfv 5255  (class class class)co 5919   CCcc 7872   RRcr 7873   0cc0 7874   1c1 7875    + caddc 7877    x. cmul 7879    < clt 8056    - cmin 8192    / cdiv 8693   NNcn 8984   2c2 9035   NN0cn0 9243   ZZcz 9320   ZZ>=cuz 9595   ...cfz 10077   ^cexp 10612   sum_csu 11499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992  ax-arch 7993  ax-caucvg 7994
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-irdg 6425  df-frec 6446  df-1o 6471  df-oadd 6475  df-er 6589  df-en 6797  df-dom 6798  df-fin 6799  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-n0 9244  df-z 9321  df-uz 9596  df-q 9688  df-rp 9723  df-fz 10078  df-fzo 10212  df-seqfrec 10522  df-exp 10613  df-fac 10800  df-bc 10822  df-ihash 10850  df-cj 10989  df-re 10990  df-im 10991  df-rsqrt 11145  df-abs 11146  df-clim 11425  df-sumdc 11500
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator