ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgnn0p1 Unicode version

Theorem mulgnn0p1 13584
Description: Group multiple (exponentiation) operation at a successor, extended to  NN0. (Contributed by Mario Carneiro, 11-Dec-2014.)
Hypotheses
Ref Expression
mulgnn0p1.b  |-  B  =  ( Base `  G
)
mulgnn0p1.t  |-  .x.  =  (.g
`  G )
mulgnn0p1.p  |-  .+  =  ( +g  `  G )
Assertion
Ref Expression
mulgnn0p1  |-  ( ( G  e.  Mnd  /\  N  e.  NN0  /\  X  e.  B )  ->  (
( N  +  1 )  .x.  X )  =  ( ( N 
.x.  X )  .+  X ) )

Proof of Theorem mulgnn0p1
StepHypRef Expression
1 simpr 110 . . 3  |-  ( ( ( G  e.  Mnd  /\  N  e.  NN0  /\  X  e.  B )  /\  N  e.  NN )  ->  N  e.  NN )
2 simpl3 1005 . . 3  |-  ( ( ( G  e.  Mnd  /\  N  e.  NN0  /\  X  e.  B )  /\  N  e.  NN )  ->  X  e.  B
)
3 mulgnn0p1.b . . . 4  |-  B  =  ( Base `  G
)
4 mulgnn0p1.t . . . 4  |-  .x.  =  (.g
`  G )
5 mulgnn0p1.p . . . 4  |-  .+  =  ( +g  `  G )
63, 4, 5mulgnnp1 13581 . . 3  |-  ( ( N  e.  NN  /\  X  e.  B )  ->  ( ( N  + 
1 )  .x.  X
)  =  ( ( N  .x.  X ) 
.+  X ) )
71, 2, 6syl2anc 411 . 2  |-  ( ( ( G  e.  Mnd  /\  N  e.  NN0  /\  X  e.  B )  /\  N  e.  NN )  ->  ( ( N  +  1 )  .x.  X )  =  ( ( N  .x.  X
)  .+  X )
)
8 eqid 2207 . . . . . . 7  |-  ( 0g
`  G )  =  ( 0g `  G
)
93, 5, 8mndlid 13382 . . . . . 6  |-  ( ( G  e.  Mnd  /\  X  e.  B )  ->  ( ( 0g `  G )  .+  X
)  =  X )
103, 8, 4mulg0 13576 . . . . . . . 8  |-  ( X  e.  B  ->  (
0  .x.  X )  =  ( 0g `  G ) )
1110adantl 277 . . . . . . 7  |-  ( ( G  e.  Mnd  /\  X  e.  B )  ->  ( 0  .x.  X
)  =  ( 0g
`  G ) )
1211oveq1d 5982 . . . . . 6  |-  ( ( G  e.  Mnd  /\  X  e.  B )  ->  ( ( 0  .x. 
X )  .+  X
)  =  ( ( 0g `  G ) 
.+  X ) )
133, 4mulg1 13580 . . . . . . 7  |-  ( X  e.  B  ->  (
1  .x.  X )  =  X )
1413adantl 277 . . . . . 6  |-  ( ( G  e.  Mnd  /\  X  e.  B )  ->  ( 1  .x.  X
)  =  X )
159, 12, 143eqtr4rd 2251 . . . . 5  |-  ( ( G  e.  Mnd  /\  X  e.  B )  ->  ( 1  .x.  X
)  =  ( ( 0  .x.  X ) 
.+  X ) )
16153adant2 1019 . . . 4  |-  ( ( G  e.  Mnd  /\  N  e.  NN0  /\  X  e.  B )  ->  (
1  .x.  X )  =  ( ( 0 
.x.  X )  .+  X ) )
17 oveq1 5974 . . . . . . 7  |-  ( N  =  0  ->  ( N  +  1 )  =  ( 0  +  1 ) )
18 1e0p1 9580 . . . . . . 7  |-  1  =  ( 0  +  1 )
1917, 18eqtr4di 2258 . . . . . 6  |-  ( N  =  0  ->  ( N  +  1 )  =  1 )
2019oveq1d 5982 . . . . 5  |-  ( N  =  0  ->  (
( N  +  1 )  .x.  X )  =  ( 1  .x. 
X ) )
21 oveq1 5974 . . . . . 6  |-  ( N  =  0  ->  ( N  .x.  X )  =  ( 0  .x.  X
) )
2221oveq1d 5982 . . . . 5  |-  ( N  =  0  ->  (
( N  .x.  X
)  .+  X )  =  ( ( 0 
.x.  X )  .+  X ) )
2320, 22eqeq12d 2222 . . . 4  |-  ( N  =  0  ->  (
( ( N  + 
1 )  .x.  X
)  =  ( ( N  .x.  X ) 
.+  X )  <->  ( 1 
.x.  X )  =  ( ( 0  .x. 
X )  .+  X
) ) )
2416, 23syl5ibrcom 157 . . 3  |-  ( ( G  e.  Mnd  /\  N  e.  NN0  /\  X  e.  B )  ->  ( N  =  0  ->  ( ( N  +  1 )  .x.  X )  =  ( ( N 
.x.  X )  .+  X ) ) )
2524imp 124 . 2  |-  ( ( ( G  e.  Mnd  /\  N  e.  NN0  /\  X  e.  B )  /\  N  =  0
)  ->  ( ( N  +  1 ) 
.x.  X )  =  ( ( N  .x.  X )  .+  X
) )
26 simp2 1001 . . 3  |-  ( ( G  e.  Mnd  /\  N  e.  NN0  /\  X  e.  B )  ->  N  e.  NN0 )
27 elnn0 9332 . . 3  |-  ( N  e.  NN0  <->  ( N  e.  NN  \/  N  =  0 ) )
2826, 27sylib 122 . 2  |-  ( ( G  e.  Mnd  /\  N  e.  NN0  /\  X  e.  B )  ->  ( N  e.  NN  \/  N  =  0 ) )
297, 25, 28mpjaodan 800 1  |-  ( ( G  e.  Mnd  /\  N  e.  NN0  /\  X  e.  B )  ->  (
( N  +  1 )  .x.  X )  =  ( ( N 
.x.  X )  .+  X ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 710    /\ w3a 981    = wceq 1373    e. wcel 2178   ` cfv 5290  (class class class)co 5967   0cc0 7960   1c1 7961    + caddc 7963   NNcn 9071   NN0cn0 9330   Basecbs 12947   +g cplusg 13024   0gc0g 13203   Mndcmnd 13363  .gcmg 13570
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-frec 6500  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-inn 9072  df-2 9130  df-n0 9331  df-z 9408  df-uz 9684  df-seqfrec 10630  df-ndx 12950  df-slot 12951  df-base 12953  df-plusg 13037  df-0g 13205  df-mgm 13303  df-sgrp 13349  df-mnd 13364  df-minusg 13451  df-mulg 13571
This theorem is referenced by:  mulgaddcom  13597  mulginvcom  13598  mulgneg2  13607  mhmmulg  13614  srgmulgass  13866  srgpcomp  13867  srgpcompp  13868  lmodvsmmulgdi  14200  cnfldmulg  14453  cnfldexp  14454
  Copyright terms: Public domain W3C validator