ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bcp1nk Unicode version

Theorem bcp1nk 10984
Description: The proportion of one binomial coefficient to another with  N and  K increased by 1. (Contributed by Mario Carneiro, 16-Jan-2015.)
Assertion
Ref Expression
bcp1nk  |-  ( K  e.  ( 0 ... N )  ->  (
( N  +  1 )  _C  ( K  +  1 ) )  =  ( ( N  _C  K )  x.  ( ( N  + 
1 )  /  ( K  +  1 ) ) ) )

Proof of Theorem bcp1nk
StepHypRef Expression
1 elfzel1 10220 . . . . . 6  |-  ( K  e.  ( 0 ... N )  ->  0  e.  ZZ )
2 elfzel2 10219 . . . . . 6  |-  ( K  e.  ( 0 ... N )  ->  N  e.  ZZ )
3 elfzelz 10221 . . . . . 6  |-  ( K  e.  ( 0 ... N )  ->  K  e.  ZZ )
4 1zzd 9473 . . . . . 6  |-  ( K  e.  ( 0 ... N )  ->  1  e.  ZZ )
5 fzaddel 10255 . . . . . 6  |-  ( ( ( 0  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  1  e.  ZZ ) )  -> 
( K  e.  ( 0 ... N )  <-> 
( K  +  1 )  e.  ( ( 0  +  1 ) ... ( N  + 
1 ) ) ) )
61, 2, 3, 4, 5syl22anc 1272 . . . . 5  |-  ( K  e.  ( 0 ... N )  ->  ( K  e.  ( 0 ... N )  <->  ( K  +  1 )  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) ) )
76ibi 176 . . . 4  |-  ( K  e.  ( 0 ... N )  ->  ( K  +  1 )  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) )
8 1e0p1 9619 . . . . 5  |-  1  =  ( 0  +  1 )
98oveq1i 6011 . . . 4  |-  ( 1 ... ( N  + 
1 ) )  =  ( ( 0  +  1 ) ... ( N  +  1 ) )
107, 9eleqtrrdi 2323 . . 3  |-  ( K  e.  ( 0 ... N )  ->  ( K  +  1 )  e.  ( 1 ... ( N  +  1 ) ) )
11 bcm1k 10982 . . 3  |-  ( ( K  +  1 )  e.  ( 1 ... ( N  +  1 ) )  ->  (
( N  +  1 )  _C  ( K  +  1 ) )  =  ( ( ( N  +  1 )  _C  ( ( K  +  1 )  - 
1 ) )  x.  ( ( ( N  +  1 )  -  ( ( K  + 
1 )  -  1 ) )  /  ( K  +  1 ) ) ) )
1210, 11syl 14 . 2  |-  ( K  e.  ( 0 ... N )  ->  (
( N  +  1 )  _C  ( K  +  1 ) )  =  ( ( ( N  +  1 )  _C  ( ( K  +  1 )  - 
1 ) )  x.  ( ( ( N  +  1 )  -  ( ( K  + 
1 )  -  1 ) )  /  ( K  +  1 ) ) ) )
133zcnd 9570 . . . . . . 7  |-  ( K  e.  ( 0 ... N )  ->  K  e.  CC )
14 ax-1cn 8092 . . . . . . 7  |-  1  e.  CC
15 pncan 8352 . . . . . . 7  |-  ( ( K  e.  CC  /\  1  e.  CC )  ->  ( ( K  + 
1 )  -  1 )  =  K )
1613, 14, 15sylancl 413 . . . . . 6  |-  ( K  e.  ( 0 ... N )  ->  (
( K  +  1 )  -  1 )  =  K )
1716oveq2d 6017 . . . . 5  |-  ( K  e.  ( 0 ... N )  ->  (
( N  +  1 )  _C  ( ( K  +  1 )  -  1 ) )  =  ( ( N  +  1 )  _C  K ) )
18 bcp1n 10983 . . . . 5  |-  ( K  e.  ( 0 ... N )  ->  (
( N  +  1 )  _C  K )  =  ( ( N  _C  K )  x.  ( ( N  + 
1 )  /  (
( N  +  1 )  -  K ) ) ) )
1917, 18eqtrd 2262 . . . 4  |-  ( K  e.  ( 0 ... N )  ->  (
( N  +  1 )  _C  ( ( K  +  1 )  -  1 ) )  =  ( ( N  _C  K )  x.  ( ( N  + 
1 )  /  (
( N  +  1 )  -  K ) ) ) )
2016oveq2d 6017 . . . . 5  |-  ( K  e.  ( 0 ... N )  ->  (
( N  +  1 )  -  ( ( K  +  1 )  -  1 ) )  =  ( ( N  +  1 )  -  K ) )
2120oveq1d 6016 . . . 4  |-  ( K  e.  ( 0 ... N )  ->  (
( ( N  + 
1 )  -  (
( K  +  1 )  -  1 ) )  /  ( K  +  1 ) )  =  ( ( ( N  +  1 )  -  K )  / 
( K  +  1 ) ) )
2219, 21oveq12d 6019 . . 3  |-  ( K  e.  ( 0 ... N )  ->  (
( ( N  + 
1 )  _C  (
( K  +  1 )  -  1 ) )  x.  ( ( ( N  +  1 )  -  ( ( K  +  1 )  -  1 ) )  /  ( K  + 
1 ) ) )  =  ( ( ( N  _C  K )  x.  ( ( N  +  1 )  / 
( ( N  + 
1 )  -  K
) ) )  x.  ( ( ( N  +  1 )  -  K )  /  ( K  +  1 ) ) ) )
23 bcrpcl 10975 . . . . . 6  |-  ( K  e.  ( 0 ... N )  ->  ( N  _C  K )  e.  RR+ )
2423rpcnd 9894 . . . . 5  |-  ( K  e.  ( 0 ... N )  ->  ( N  _C  K )  e.  CC )
252peano2zd 9572 . . . . . . . 8  |-  ( K  e.  ( 0 ... N )  ->  ( N  +  1 )  e.  ZZ )
2625zred 9569 . . . . . . 7  |-  ( K  e.  ( 0 ... N )  ->  ( N  +  1 )  e.  RR )
273zred 9569 . . . . . . . . 9  |-  ( K  e.  ( 0 ... N )  ->  K  e.  RR )
282zred 9569 . . . . . . . . 9  |-  ( K  e.  ( 0 ... N )  ->  N  e.  RR )
29 elfzle2 10224 . . . . . . . . 9  |-  ( K  e.  ( 0 ... N )  ->  K  <_  N )
3028ltp1d 9077 . . . . . . . . 9  |-  ( K  e.  ( 0 ... N )  ->  N  <  ( N  +  1 ) )
3127, 28, 26, 29, 30lelttrd 8271 . . . . . . . 8  |-  ( K  e.  ( 0 ... N )  ->  K  <  ( N  +  1 ) )
32 znnsub 9498 . . . . . . . . 9  |-  ( ( K  e.  ZZ  /\  ( N  +  1
)  e.  ZZ )  ->  ( K  < 
( N  +  1 )  <->  ( ( N  +  1 )  -  K )  e.  NN ) )
333, 25, 32syl2anc 411 . . . . . . . 8  |-  ( K  e.  ( 0 ... N )  ->  ( K  <  ( N  + 
1 )  <->  ( ( N  +  1 )  -  K )  e.  NN ) )
3431, 33mpbid 147 . . . . . . 7  |-  ( K  e.  ( 0 ... N )  ->  (
( N  +  1 )  -  K )  e.  NN )
3526, 34nndivred 9160 . . . . . 6  |-  ( K  e.  ( 0 ... N )  ->  (
( N  +  1 )  /  ( ( N  +  1 )  -  K ) )  e.  RR )
3635recnd 8175 . . . . 5  |-  ( K  e.  ( 0 ... N )  ->  (
( N  +  1 )  /  ( ( N  +  1 )  -  K ) )  e.  CC )
3734nnred 9123 . . . . . . 7  |-  ( K  e.  ( 0 ... N )  ->  (
( N  +  1 )  -  K )  e.  RR )
38 elfznn0 10310 . . . . . . . 8  |-  ( K  e.  ( 0 ... N )  ->  K  e.  NN0 )
39 nn0p1nn 9408 . . . . . . . 8  |-  ( K  e.  NN0  ->  ( K  +  1 )  e.  NN )
4038, 39syl 14 . . . . . . 7  |-  ( K  e.  ( 0 ... N )  ->  ( K  +  1 )  e.  NN )
4137, 40nndivred 9160 . . . . . 6  |-  ( K  e.  ( 0 ... N )  ->  (
( ( N  + 
1 )  -  K
)  /  ( K  +  1 ) )  e.  RR )
4241recnd 8175 . . . . 5  |-  ( K  e.  ( 0 ... N )  ->  (
( ( N  + 
1 )  -  K
)  /  ( K  +  1 ) )  e.  CC )
4324, 36, 42mulassd 8170 . . . 4  |-  ( K  e.  ( 0 ... N )  ->  (
( ( N  _C  K )  x.  (
( N  +  1 )  /  ( ( N  +  1 )  -  K ) ) )  x.  ( ( ( N  +  1 )  -  K )  /  ( K  + 
1 ) ) )  =  ( ( N  _C  K )  x.  ( ( ( N  +  1 )  / 
( ( N  + 
1 )  -  K
) )  x.  (
( ( N  + 
1 )  -  K
)  /  ( K  +  1 ) ) ) ) )
4425zcnd 9570 . . . . . 6  |-  ( K  e.  ( 0 ... N )  ->  ( N  +  1 )  e.  CC )
4534nncnd 9124 . . . . . 6  |-  ( K  e.  ( 0 ... N )  ->  (
( N  +  1 )  -  K )  e.  CC )
4640nncnd 9124 . . . . . 6  |-  ( K  e.  ( 0 ... N )  ->  ( K  +  1 )  e.  CC )
4734nnap0d 9156 . . . . . 6  |-  ( K  e.  ( 0 ... N )  ->  (
( N  +  1 )  -  K ) #  0 )
4840nnap0d 9156 . . . . . 6  |-  ( K  e.  ( 0 ... N )  ->  ( K  +  1 ) #  0 )
4944, 45, 46, 47, 48dmdcanap2d 8968 . . . . 5  |-  ( K  e.  ( 0 ... N )  ->  (
( ( N  + 
1 )  /  (
( N  +  1 )  -  K ) )  x.  ( ( ( N  +  1 )  -  K )  /  ( K  + 
1 ) ) )  =  ( ( N  +  1 )  / 
( K  +  1 ) ) )
5049oveq2d 6017 . . . 4  |-  ( K  e.  ( 0 ... N )  ->  (
( N  _C  K
)  x.  ( ( ( N  +  1 )  /  ( ( N  +  1 )  -  K ) )  x.  ( ( ( N  +  1 )  -  K )  / 
( K  +  1 ) ) ) )  =  ( ( N  _C  K )  x.  ( ( N  + 
1 )  /  ( K  +  1 ) ) ) )
5143, 50eqtrd 2262 . . 3  |-  ( K  e.  ( 0 ... N )  ->  (
( ( N  _C  K )  x.  (
( N  +  1 )  /  ( ( N  +  1 )  -  K ) ) )  x.  ( ( ( N  +  1 )  -  K )  /  ( K  + 
1 ) ) )  =  ( ( N  _C  K )  x.  ( ( N  + 
1 )  /  ( K  +  1 ) ) ) )
5222, 51eqtrd 2262 . 2  |-  ( K  e.  ( 0 ... N )  ->  (
( ( N  + 
1 )  _C  (
( K  +  1 )  -  1 ) )  x.  ( ( ( N  +  1 )  -  ( ( K  +  1 )  -  1 ) )  /  ( K  + 
1 ) ) )  =  ( ( N  _C  K )  x.  ( ( N  + 
1 )  /  ( K  +  1 ) ) ) )
5312, 52eqtrd 2262 1  |-  ( K  e.  ( 0 ... N )  ->  (
( N  +  1 )  _C  ( K  +  1 ) )  =  ( ( N  _C  K )  x.  ( ( N  + 
1 )  /  ( K  +  1 ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1395    e. wcel 2200   class class class wbr 4083  (class class class)co 6001   CCcc 7997   0cc0 7999   1c1 8000    + caddc 8002    x. cmul 8004    < clt 8181    - cmin 8317    / cdiv 8819   NNcn 9110   NN0cn0 9369   ZZcz 9446   ...cfz 10204    _C cbc 10969
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116  ax-pre-mulext 8117
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-frec 6537  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729  df-div 8820  df-inn 9111  df-n0 9370  df-z 9447  df-uz 9723  df-q 9815  df-rp 9850  df-fz 10205  df-seqfrec 10670  df-fac 10948  df-bc 10970
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator