| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ordtri2orexmid | Unicode version | ||
| Description: Ordinal trichotomy implies excluded middle. (Contributed by Jim Kingdon, 31-Jul-2019.) |
| Ref | Expression |
|---|---|
| ordtri2orexmid.1 |
|
| Ref | Expression |
|---|---|
| ordtri2orexmid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordtri2orexmid.1 |
. . . 4
| |
| 2 | ordtriexmidlem 4610 |
. . . . 5
| |
| 3 | suc0 4501 |
. . . . . 6
| |
| 4 | 0elon 4482 |
. . . . . . 7
| |
| 5 | 4 | onsuci 4607 |
. . . . . 6
|
| 6 | 3, 5 | eqeltrri 2303 |
. . . . 5
|
| 7 | eleq1 2292 |
. . . . . . 7
| |
| 8 | sseq2 3248 |
. . . . . . 7
| |
| 9 | 7, 8 | orbi12d 798 |
. . . . . 6
|
| 10 | eleq2 2293 |
. . . . . . 7
| |
| 11 | sseq1 3247 |
. . . . . . 7
| |
| 12 | 10, 11 | orbi12d 798 |
. . . . . 6
|
| 13 | 9, 12 | rspc2va 2921 |
. . . . 5
|
| 14 | 2, 6, 13 | mpanl12 436 |
. . . 4
|
| 15 | 1, 14 | ax-mp 5 |
. . 3
|
| 16 | elsni 3684 |
. . . . 5
| |
| 17 | ordtriexmidlem2 4611 |
. . . . 5
| |
| 18 | 16, 17 | syl 14 |
. . . 4
|
| 19 | snssg 3801 |
. . . . . 6
| |
| 20 | 4, 19 | ax-mp 5 |
. . . . 5
|
| 21 | 0ex 4210 |
. . . . . . . 8
| |
| 22 | 21 | snid 3697 |
. . . . . . 7
|
| 23 | biidd 172 |
. . . . . . . 8
| |
| 24 | 23 | elrab3 2960 |
. . . . . . 7
|
| 25 | 22, 24 | ax-mp 5 |
. . . . . 6
|
| 26 | 25 | biimpi 120 |
. . . . 5
|
| 27 | 20, 26 | sylbir 135 |
. . . 4
|
| 28 | 18, 27 | orim12i 764 |
. . 3
|
| 29 | 15, 28 | ax-mp 5 |
. 2
|
| 30 | orcom 733 |
. 2
| |
| 31 | 29, 30 | mpbi 145 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-uni 3888 df-tr 4182 df-iord 4456 df-on 4458 df-suc 4461 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |