| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2ordpr | GIF version | ||
| Description: Version of 2on 6511 with the definition of 2o expanded and expressed in terms of Ord. (Contributed by Jim Kingdon, 29-Aug-2021.) |
| Ref | Expression |
|---|---|
| 2ordpr | ⊢ Ord {∅, {∅}} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ord0 4438 | . . 3 ⊢ Ord ∅ | |
| 2 | ordsucim 4548 | . . 3 ⊢ (Ord ∅ → Ord suc ∅) | |
| 3 | ordsucim 4548 | . . 3 ⊢ (Ord suc ∅ → Ord suc suc ∅) | |
| 4 | 1, 2, 3 | mp2b 8 | . 2 ⊢ Ord suc suc ∅ |
| 5 | df-suc 4418 | . . . 4 ⊢ suc {∅} = ({∅} ∪ {{∅}}) | |
| 6 | suc0 4458 | . . . . 5 ⊢ suc ∅ = {∅} | |
| 7 | suceq 4449 | . . . . 5 ⊢ (suc ∅ = {∅} → suc suc ∅ = suc {∅}) | |
| 8 | 6, 7 | ax-mp 5 | . . . 4 ⊢ suc suc ∅ = suc {∅} |
| 9 | df-pr 3640 | . . . 4 ⊢ {∅, {∅}} = ({∅} ∪ {{∅}}) | |
| 10 | 5, 8, 9 | 3eqtr4i 2236 | . . 3 ⊢ suc suc ∅ = {∅, {∅}} |
| 11 | ordeq 4419 | . . 3 ⊢ (suc suc ∅ = {∅, {∅}} → (Ord suc suc ∅ ↔ Ord {∅, {∅}})) | |
| 12 | 10, 11 | ax-mp 5 | . 2 ⊢ (Ord suc suc ∅ ↔ Ord {∅, {∅}}) |
| 13 | 4, 12 | mpbi 145 | 1 ⊢ Ord {∅, {∅}} |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1373 ∪ cun 3164 ∅c0 3460 {csn 3633 {cpr 3634 Ord word 4409 suc csuc 4412 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-uni 3851 df-tr 4143 df-iord 4413 df-suc 4418 |
| This theorem is referenced by: ontr2exmid 4573 ordtri2or2exmidlem 4574 onsucelsucexmidlem 4577 |
| Copyright terms: Public domain | W3C validator |