![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 2ordpr | GIF version |
Description: Version of 2on 6428 with the definition of 2o expanded and expressed in terms of Ord. (Contributed by Jim Kingdon, 29-Aug-2021.) |
Ref | Expression |
---|---|
2ordpr | ⊢ Ord {∅, {∅}} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ord0 4393 | . . 3 ⊢ Ord ∅ | |
2 | ordsucim 4501 | . . 3 ⊢ (Ord ∅ → Ord suc ∅) | |
3 | ordsucim 4501 | . . 3 ⊢ (Ord suc ∅ → Ord suc suc ∅) | |
4 | 1, 2, 3 | mp2b 8 | . 2 ⊢ Ord suc suc ∅ |
5 | df-suc 4373 | . . . 4 ⊢ suc {∅} = ({∅} ∪ {{∅}}) | |
6 | suc0 4413 | . . . . 5 ⊢ suc ∅ = {∅} | |
7 | suceq 4404 | . . . . 5 ⊢ (suc ∅ = {∅} → suc suc ∅ = suc {∅}) | |
8 | 6, 7 | ax-mp 5 | . . . 4 ⊢ suc suc ∅ = suc {∅} |
9 | df-pr 3601 | . . . 4 ⊢ {∅, {∅}} = ({∅} ∪ {{∅}}) | |
10 | 5, 8, 9 | 3eqtr4i 2208 | . . 3 ⊢ suc suc ∅ = {∅, {∅}} |
11 | ordeq 4374 | . . 3 ⊢ (suc suc ∅ = {∅, {∅}} → (Ord suc suc ∅ ↔ Ord {∅, {∅}})) | |
12 | 10, 11 | ax-mp 5 | . 2 ⊢ (Ord suc suc ∅ ↔ Ord {∅, {∅}}) |
13 | 4, 12 | mpbi 145 | 1 ⊢ Ord {∅, {∅}} |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 = wceq 1353 ∪ cun 3129 ∅c0 3424 {csn 3594 {cpr 3595 Ord word 4364 suc csuc 4367 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2741 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-uni 3812 df-tr 4104 df-iord 4368 df-suc 4373 |
This theorem is referenced by: ontr2exmid 4526 ordtri2or2exmidlem 4527 onsucelsucexmidlem 4530 |
Copyright terms: Public domain | W3C validator |