| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2ordpr | GIF version | ||
| Description: Version of 2on 6571 with the definition of 2o expanded and expressed in terms of Ord. (Contributed by Jim Kingdon, 29-Aug-2021.) |
| Ref | Expression |
|---|---|
| 2ordpr | ⊢ Ord {∅, {∅}} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ord0 4482 | . . 3 ⊢ Ord ∅ | |
| 2 | ordsucim 4592 | . . 3 ⊢ (Ord ∅ → Ord suc ∅) | |
| 3 | ordsucim 4592 | . . 3 ⊢ (Ord suc ∅ → Ord suc suc ∅) | |
| 4 | 1, 2, 3 | mp2b 8 | . 2 ⊢ Ord suc suc ∅ |
| 5 | df-suc 4462 | . . . 4 ⊢ suc {∅} = ({∅} ∪ {{∅}}) | |
| 6 | suc0 4502 | . . . . 5 ⊢ suc ∅ = {∅} | |
| 7 | suceq 4493 | . . . . 5 ⊢ (suc ∅ = {∅} → suc suc ∅ = suc {∅}) | |
| 8 | 6, 7 | ax-mp 5 | . . . 4 ⊢ suc suc ∅ = suc {∅} |
| 9 | df-pr 3673 | . . . 4 ⊢ {∅, {∅}} = ({∅} ∪ {{∅}}) | |
| 10 | 5, 8, 9 | 3eqtr4i 2260 | . . 3 ⊢ suc suc ∅ = {∅, {∅}} |
| 11 | ordeq 4463 | . . 3 ⊢ (suc suc ∅ = {∅, {∅}} → (Ord suc suc ∅ ↔ Ord {∅, {∅}})) | |
| 12 | 10, 11 | ax-mp 5 | . 2 ⊢ (Ord suc suc ∅ ↔ Ord {∅, {∅}}) |
| 13 | 4, 12 | mpbi 145 | 1 ⊢ Ord {∅, {∅}} |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1395 ∪ cun 3195 ∅c0 3491 {csn 3666 {cpr 3667 Ord word 4453 suc csuc 4456 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-uni 3889 df-tr 4183 df-iord 4457 df-suc 4462 |
| This theorem is referenced by: ontr2exmid 4617 ordtri2or2exmidlem 4618 onsucelsucexmidlem 4621 |
| Copyright terms: Public domain | W3C validator |