![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 2ordpr | GIF version |
Description: Version of 2on 6480 with the definition of 2o expanded and expressed in terms of Ord. (Contributed by Jim Kingdon, 29-Aug-2021.) |
Ref | Expression |
---|---|
2ordpr | ⊢ Ord {∅, {∅}} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ord0 4423 | . . 3 ⊢ Ord ∅ | |
2 | ordsucim 4533 | . . 3 ⊢ (Ord ∅ → Ord suc ∅) | |
3 | ordsucim 4533 | . . 3 ⊢ (Ord suc ∅ → Ord suc suc ∅) | |
4 | 1, 2, 3 | mp2b 8 | . 2 ⊢ Ord suc suc ∅ |
5 | df-suc 4403 | . . . 4 ⊢ suc {∅} = ({∅} ∪ {{∅}}) | |
6 | suc0 4443 | . . . . 5 ⊢ suc ∅ = {∅} | |
7 | suceq 4434 | . . . . 5 ⊢ (suc ∅ = {∅} → suc suc ∅ = suc {∅}) | |
8 | 6, 7 | ax-mp 5 | . . . 4 ⊢ suc suc ∅ = suc {∅} |
9 | df-pr 3626 | . . . 4 ⊢ {∅, {∅}} = ({∅} ∪ {{∅}}) | |
10 | 5, 8, 9 | 3eqtr4i 2224 | . . 3 ⊢ suc suc ∅ = {∅, {∅}} |
11 | ordeq 4404 | . . 3 ⊢ (suc suc ∅ = {∅, {∅}} → (Ord suc suc ∅ ↔ Ord {∅, {∅}})) | |
12 | 10, 11 | ax-mp 5 | . 2 ⊢ (Ord suc suc ∅ ↔ Ord {∅, {∅}}) |
13 | 4, 12 | mpbi 145 | 1 ⊢ Ord {∅, {∅}} |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 = wceq 1364 ∪ cun 3152 ∅c0 3447 {csn 3619 {cpr 3620 Ord word 4394 suc csuc 4397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-uni 3837 df-tr 4129 df-iord 4398 df-suc 4403 |
This theorem is referenced by: ontr2exmid 4558 ordtri2or2exmidlem 4559 onsucelsucexmidlem 4562 |
Copyright terms: Public domain | W3C validator |