Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 2ordpr | GIF version |
Description: Version of 2on 6404 with the definition of 2o expanded and expressed in terms of Ord. (Contributed by Jim Kingdon, 29-Aug-2021.) |
Ref | Expression |
---|---|
2ordpr | ⊢ Ord {∅, {∅}} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ord0 4376 | . . 3 ⊢ Ord ∅ | |
2 | ordsucim 4484 | . . 3 ⊢ (Ord ∅ → Ord suc ∅) | |
3 | ordsucim 4484 | . . 3 ⊢ (Ord suc ∅ → Ord suc suc ∅) | |
4 | 1, 2, 3 | mp2b 8 | . 2 ⊢ Ord suc suc ∅ |
5 | df-suc 4356 | . . . 4 ⊢ suc {∅} = ({∅} ∪ {{∅}}) | |
6 | suc0 4396 | . . . . 5 ⊢ suc ∅ = {∅} | |
7 | suceq 4387 | . . . . 5 ⊢ (suc ∅ = {∅} → suc suc ∅ = suc {∅}) | |
8 | 6, 7 | ax-mp 5 | . . . 4 ⊢ suc suc ∅ = suc {∅} |
9 | df-pr 3590 | . . . 4 ⊢ {∅, {∅}} = ({∅} ∪ {{∅}}) | |
10 | 5, 8, 9 | 3eqtr4i 2201 | . . 3 ⊢ suc suc ∅ = {∅, {∅}} |
11 | ordeq 4357 | . . 3 ⊢ (suc suc ∅ = {∅, {∅}} → (Ord suc suc ∅ ↔ Ord {∅, {∅}})) | |
12 | 10, 11 | ax-mp 5 | . 2 ⊢ (Ord suc suc ∅ ↔ Ord {∅, {∅}}) |
13 | 4, 12 | mpbi 144 | 1 ⊢ Ord {∅, {∅}} |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 = wceq 1348 ∪ cun 3119 ∅c0 3414 {csn 3583 {cpr 3584 Ord word 4347 suc csuc 4350 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-uni 3797 df-tr 4088 df-iord 4351 df-suc 4356 |
This theorem is referenced by: ontr2exmid 4509 ordtri2or2exmidlem 4510 onsucelsucexmidlem 4513 |
Copyright terms: Public domain | W3C validator |