ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2ordpr GIF version

Theorem 2ordpr 4572
Description: Version of 2on 6511 with the definition of 2o expanded and expressed in terms of Ord. (Contributed by Jim Kingdon, 29-Aug-2021.)
Assertion
Ref Expression
2ordpr Ord {∅, {∅}}

Proof of Theorem 2ordpr
StepHypRef Expression
1 ord0 4438 . . 3 Ord ∅
2 ordsucim 4548 . . 3 (Ord ∅ → Ord suc ∅)
3 ordsucim 4548 . . 3 (Ord suc ∅ → Ord suc suc ∅)
41, 2, 3mp2b 8 . 2 Ord suc suc ∅
5 df-suc 4418 . . . 4 suc {∅} = ({∅} ∪ {{∅}})
6 suc0 4458 . . . . 5 suc ∅ = {∅}
7 suceq 4449 . . . . 5 (suc ∅ = {∅} → suc suc ∅ = suc {∅})
86, 7ax-mp 5 . . . 4 suc suc ∅ = suc {∅}
9 df-pr 3640 . . . 4 {∅, {∅}} = ({∅} ∪ {{∅}})
105, 8, 93eqtr4i 2236 . . 3 suc suc ∅ = {∅, {∅}}
11 ordeq 4419 . . 3 (suc suc ∅ = {∅, {∅}} → (Ord suc suc ∅ ↔ Ord {∅, {∅}}))
1210, 11ax-mp 5 . 2 (Ord suc suc ∅ ↔ Ord {∅, {∅}})
134, 12mpbi 145 1 Ord {∅, {∅}}
Colors of variables: wff set class
Syntax hints:  wb 105   = wceq 1373  cun 3164  c0 3460  {csn 3633  {cpr 3634  Ord word 4409  suc csuc 4412
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-uni 3851  df-tr 4143  df-iord 4413  df-suc 4418
This theorem is referenced by:  ontr2exmid  4573  ordtri2or2exmidlem  4574  onsucelsucexmidlem  4577
  Copyright terms: Public domain W3C validator