ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2ordpr GIF version

Theorem 2ordpr 4368
Description: Version of 2on 6228 with the definition of 2o expanded and expressed in terms of Ord. (Contributed by Jim Kingdon, 29-Aug-2021.)
Assertion
Ref Expression
2ordpr Ord {∅, {∅}}

Proof of Theorem 2ordpr
StepHypRef Expression
1 ord0 4242 . . 3 Ord ∅
2 ordsucim 4345 . . 3 (Ord ∅ → Ord suc ∅)
3 ordsucim 4345 . . 3 (Ord suc ∅ → Ord suc suc ∅)
41, 2, 3mp2b 8 . 2 Ord suc suc ∅
5 df-suc 4222 . . . 4 suc {∅} = ({∅} ∪ {{∅}})
6 suc0 4262 . . . . 5 suc ∅ = {∅}
7 suceq 4253 . . . . 5 (suc ∅ = {∅} → suc suc ∅ = suc {∅})
86, 7ax-mp 7 . . . 4 suc suc ∅ = suc {∅}
9 df-pr 3473 . . . 4 {∅, {∅}} = ({∅} ∪ {{∅}})
105, 8, 93eqtr4i 2125 . . 3 suc suc ∅ = {∅, {∅}}
11 ordeq 4223 . . 3 (suc suc ∅ = {∅, {∅}} → (Ord suc suc ∅ ↔ Ord {∅, {∅}}))
1210, 11ax-mp 7 . 2 (Ord suc suc ∅ ↔ Ord {∅, {∅}})
134, 12mpbi 144 1 Ord {∅, {∅}}
Colors of variables: wff set class
Syntax hints:  wb 104   = wceq 1296  cun 3011  c0 3302  {csn 3466  {cpr 3467  Ord word 4213  suc csuc 4216
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 582  ax-in2 583  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077
This theorem depends on definitions:  df-bi 116  df-tru 1299  df-nf 1402  df-sb 1700  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ral 2375  df-rex 2376  df-v 2635  df-dif 3015  df-un 3017  df-in 3019  df-ss 3026  df-nul 3303  df-pw 3451  df-sn 3472  df-pr 3473  df-uni 3676  df-tr 3959  df-iord 4217  df-suc 4222
This theorem is referenced by:  ontr2exmid  4369  ordtri2or2exmidlem  4370  onsucelsucexmidlem  4373
  Copyright terms: Public domain W3C validator