| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > 2ordpr | GIF version | ||
| Description: Version of 2on 6483 with the definition of 2o expanded and expressed in terms of Ord. (Contributed by Jim Kingdon, 29-Aug-2021.) | 
| Ref | Expression | 
|---|---|
| 2ordpr | ⊢ Ord {∅, {∅}} | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ord0 4426 | . . 3 ⊢ Ord ∅ | |
| 2 | ordsucim 4536 | . . 3 ⊢ (Ord ∅ → Ord suc ∅) | |
| 3 | ordsucim 4536 | . . 3 ⊢ (Ord suc ∅ → Ord suc suc ∅) | |
| 4 | 1, 2, 3 | mp2b 8 | . 2 ⊢ Ord suc suc ∅ | 
| 5 | df-suc 4406 | . . . 4 ⊢ suc {∅} = ({∅} ∪ {{∅}}) | |
| 6 | suc0 4446 | . . . . 5 ⊢ suc ∅ = {∅} | |
| 7 | suceq 4437 | . . . . 5 ⊢ (suc ∅ = {∅} → suc suc ∅ = suc {∅}) | |
| 8 | 6, 7 | ax-mp 5 | . . . 4 ⊢ suc suc ∅ = suc {∅} | 
| 9 | df-pr 3629 | . . . 4 ⊢ {∅, {∅}} = ({∅} ∪ {{∅}}) | |
| 10 | 5, 8, 9 | 3eqtr4i 2227 | . . 3 ⊢ suc suc ∅ = {∅, {∅}} | 
| 11 | ordeq 4407 | . . 3 ⊢ (suc suc ∅ = {∅, {∅}} → (Ord suc suc ∅ ↔ Ord {∅, {∅}})) | |
| 12 | 10, 11 | ax-mp 5 | . 2 ⊢ (Ord suc suc ∅ ↔ Ord {∅, {∅}}) | 
| 13 | 4, 12 | mpbi 145 | 1 ⊢ Ord {∅, {∅}} | 
| Colors of variables: wff set class | 
| Syntax hints: ↔ wb 105 = wceq 1364 ∪ cun 3155 ∅c0 3450 {csn 3622 {cpr 3623 Ord word 4397 suc csuc 4400 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-uni 3840 df-tr 4132 df-iord 4401 df-suc 4406 | 
| This theorem is referenced by: ontr2exmid 4561 ordtri2or2exmidlem 4562 onsucelsucexmidlem 4565 | 
| Copyright terms: Public domain | W3C validator |