![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 2ordpr | GIF version |
Description: Version of 2on 6228 with the definition of 2o expanded and expressed in terms of Ord. (Contributed by Jim Kingdon, 29-Aug-2021.) |
Ref | Expression |
---|---|
2ordpr | ⊢ Ord {∅, {∅}} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ord0 4242 | . . 3 ⊢ Ord ∅ | |
2 | ordsucim 4345 | . . 3 ⊢ (Ord ∅ → Ord suc ∅) | |
3 | ordsucim 4345 | . . 3 ⊢ (Ord suc ∅ → Ord suc suc ∅) | |
4 | 1, 2, 3 | mp2b 8 | . 2 ⊢ Ord suc suc ∅ |
5 | df-suc 4222 | . . . 4 ⊢ suc {∅} = ({∅} ∪ {{∅}}) | |
6 | suc0 4262 | . . . . 5 ⊢ suc ∅ = {∅} | |
7 | suceq 4253 | . . . . 5 ⊢ (suc ∅ = {∅} → suc suc ∅ = suc {∅}) | |
8 | 6, 7 | ax-mp 7 | . . . 4 ⊢ suc suc ∅ = suc {∅} |
9 | df-pr 3473 | . . . 4 ⊢ {∅, {∅}} = ({∅} ∪ {{∅}}) | |
10 | 5, 8, 9 | 3eqtr4i 2125 | . . 3 ⊢ suc suc ∅ = {∅, {∅}} |
11 | ordeq 4223 | . . 3 ⊢ (suc suc ∅ = {∅, {∅}} → (Ord suc suc ∅ ↔ Ord {∅, {∅}})) | |
12 | 10, 11 | ax-mp 7 | . 2 ⊢ (Ord suc suc ∅ ↔ Ord {∅, {∅}}) |
13 | 4, 12 | mpbi 144 | 1 ⊢ Ord {∅, {∅}} |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 = wceq 1296 ∪ cun 3011 ∅c0 3302 {csn 3466 {cpr 3467 Ord word 4213 suc csuc 4216 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 582 ax-in2 583 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 |
This theorem depends on definitions: df-bi 116 df-tru 1299 df-nf 1402 df-sb 1700 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-ral 2375 df-rex 2376 df-v 2635 df-dif 3015 df-un 3017 df-in 3019 df-ss 3026 df-nul 3303 df-pw 3451 df-sn 3472 df-pr 3473 df-uni 3676 df-tr 3959 df-iord 4217 df-suc 4222 |
This theorem is referenced by: ontr2exmid 4369 ordtri2or2exmidlem 4370 onsucelsucexmidlem 4373 |
Copyright terms: Public domain | W3C validator |