ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2ordpr GIF version

Theorem 2ordpr 4557
Description: Version of 2on 6480 with the definition of 2o expanded and expressed in terms of Ord. (Contributed by Jim Kingdon, 29-Aug-2021.)
Assertion
Ref Expression
2ordpr Ord {∅, {∅}}

Proof of Theorem 2ordpr
StepHypRef Expression
1 ord0 4423 . . 3 Ord ∅
2 ordsucim 4533 . . 3 (Ord ∅ → Ord suc ∅)
3 ordsucim 4533 . . 3 (Ord suc ∅ → Ord suc suc ∅)
41, 2, 3mp2b 8 . 2 Ord suc suc ∅
5 df-suc 4403 . . . 4 suc {∅} = ({∅} ∪ {{∅}})
6 suc0 4443 . . . . 5 suc ∅ = {∅}
7 suceq 4434 . . . . 5 (suc ∅ = {∅} → suc suc ∅ = suc {∅})
86, 7ax-mp 5 . . . 4 suc suc ∅ = suc {∅}
9 df-pr 3626 . . . 4 {∅, {∅}} = ({∅} ∪ {{∅}})
105, 8, 93eqtr4i 2224 . . 3 suc suc ∅ = {∅, {∅}}
11 ordeq 4404 . . 3 (suc suc ∅ = {∅, {∅}} → (Ord suc suc ∅ ↔ Ord {∅, {∅}}))
1210, 11ax-mp 5 . 2 (Ord suc suc ∅ ↔ Ord {∅, {∅}})
134, 12mpbi 145 1 Ord {∅, {∅}}
Colors of variables: wff set class
Syntax hints:  wb 105   = wceq 1364  cun 3152  c0 3447  {csn 3619  {cpr 3620  Ord word 4394  suc csuc 4397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-uni 3837  df-tr 4129  df-iord 4398  df-suc 4403
This theorem is referenced by:  ontr2exmid  4558  ordtri2or2exmidlem  4559  onsucelsucexmidlem  4562
  Copyright terms: Public domain W3C validator