Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 2ordpr | GIF version |
Description: Version of 2on 6416 with the definition of 2o expanded and expressed in terms of Ord. (Contributed by Jim Kingdon, 29-Aug-2021.) |
Ref | Expression |
---|---|
2ordpr | ⊢ Ord {∅, {∅}} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ord0 4385 | . . 3 ⊢ Ord ∅ | |
2 | ordsucim 4493 | . . 3 ⊢ (Ord ∅ → Ord suc ∅) | |
3 | ordsucim 4493 | . . 3 ⊢ (Ord suc ∅ → Ord suc suc ∅) | |
4 | 1, 2, 3 | mp2b 8 | . 2 ⊢ Ord suc suc ∅ |
5 | df-suc 4365 | . . . 4 ⊢ suc {∅} = ({∅} ∪ {{∅}}) | |
6 | suc0 4405 | . . . . 5 ⊢ suc ∅ = {∅} | |
7 | suceq 4396 | . . . . 5 ⊢ (suc ∅ = {∅} → suc suc ∅ = suc {∅}) | |
8 | 6, 7 | ax-mp 5 | . . . 4 ⊢ suc suc ∅ = suc {∅} |
9 | df-pr 3596 | . . . 4 ⊢ {∅, {∅}} = ({∅} ∪ {{∅}}) | |
10 | 5, 8, 9 | 3eqtr4i 2206 | . . 3 ⊢ suc suc ∅ = {∅, {∅}} |
11 | ordeq 4366 | . . 3 ⊢ (suc suc ∅ = {∅, {∅}} → (Ord suc suc ∅ ↔ Ord {∅, {∅}})) | |
12 | 10, 11 | ax-mp 5 | . 2 ⊢ (Ord suc suc ∅ ↔ Ord {∅, {∅}}) |
13 | 4, 12 | mpbi 145 | 1 ⊢ Ord {∅, {∅}} |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 = wceq 1353 ∪ cun 3125 ∅c0 3420 {csn 3589 {cpr 3590 Ord word 4356 suc csuc 4359 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-v 2737 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-pw 3574 df-sn 3595 df-pr 3596 df-uni 3806 df-tr 4097 df-iord 4360 df-suc 4365 |
This theorem is referenced by: ontr2exmid 4518 ordtri2or2exmidlem 4519 onsucelsucexmidlem 4522 |
Copyright terms: Public domain | W3C validator |