| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > caucvgrelemcau | Unicode version | ||
| Description: Lemma for caucvgre 11478. Converting the Cauchy condition. (Contributed by Jim Kingdon, 20-Jul-2021.) |
| Ref | Expression |
|---|---|
| caucvgre.f |
|
| caucvgre.cau |
|
| Ref | Expression |
|---|---|
| caucvgrelemcau |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplr 528 |
. . . . . . 7
| |
| 2 | 1 | nnred 9111 |
. . . . . 6
|
| 3 | simpr 110 |
. . . . . . 7
| |
| 4 | 3 | nnred 9111 |
. . . . . 6
|
| 5 | ltle 8222 |
. . . . . 6
| |
| 6 | 2, 4, 5 | syl2anc 411 |
. . . . 5
|
| 7 | eluznn 9783 |
. . . . . . . . . . . 12
| |
| 8 | 7 | ex 115 |
. . . . . . . . . . 11
|
| 9 | nnz 9453 |
. . . . . . . . . . . . 13
| |
| 10 | eluz1 9714 |
. . . . . . . . . . . . 13
| |
| 11 | 9, 10 | syl 14 |
. . . . . . . . . . . 12
|
| 12 | simpr 110 |
. . . . . . . . . . . 12
| |
| 13 | 11, 12 | biimtrdi 163 |
. . . . . . . . . . 11
|
| 14 | 8, 13 | jcad 307 |
. . . . . . . . . 10
|
| 15 | nnz 9453 |
. . . . . . . . . . . 12
| |
| 16 | 15 | anim1i 340 |
. . . . . . . . . . 11
|
| 17 | 16, 11 | imbitrrid 156 |
. . . . . . . . . 10
|
| 18 | 14, 17 | impbid 129 |
. . . . . . . . 9
|
| 19 | 18 | adantl 277 |
. . . . . . . 8
|
| 20 | 19 | biimpar 297 |
. . . . . . 7
|
| 21 | caucvgre.cau |
. . . . . . . . 9
| |
| 22 | 21 | r19.21bi 2618 |
. . . . . . . 8
|
| 23 | 22 | r19.21bi 2618 |
. . . . . . 7
|
| 24 | 20, 23 | syldan 282 |
. . . . . 6
|
| 25 | 24 | expr 375 |
. . . . 5
|
| 26 | 6, 25 | syld 45 |
. . . 4
|
| 27 | ltxrlt 8200 |
. . . . 5
| |
| 28 | 2, 4, 27 | syl2anc 411 |
. . . 4
|
| 29 | caucvgre.f |
. . . . . . . . 9
| |
| 30 | 29 | ad2antrr 488 |
. . . . . . . 8
|
| 31 | 30, 1 | ffvelcdmd 5764 |
. . . . . . 7
|
| 32 | 30, 3 | ffvelcdmd 5764 |
. . . . . . . 8
|
| 33 | 1 | nnrecred 9145 |
. . . . . . . 8
|
| 34 | 32, 33 | readdcld 8164 |
. . . . . . 7
|
| 35 | ltxrlt 8200 |
. . . . . . 7
| |
| 36 | 31, 34, 35 | syl2anc 411 |
. . . . . 6
|
| 37 | nnap0 9127 |
. . . . . . . . . 10
| |
| 38 | 1, 37 | syl 14 |
. . . . . . . . 9
|
| 39 | caucvgrelemrec 11476 |
. . . . . . . . 9
| |
| 40 | 2, 38, 39 | syl2anc 411 |
. . . . . . . 8
|
| 41 | 40 | oveq2d 6010 |
. . . . . . 7
|
| 42 | 41 | breq2d 4094 |
. . . . . 6
|
| 43 | 36, 42 | bitr4d 191 |
. . . . 5
|
| 44 | 31, 33 | readdcld 8164 |
. . . . . . 7
|
| 45 | ltxrlt 8200 |
. . . . . . 7
| |
| 46 | 32, 44, 45 | syl2anc 411 |
. . . . . 6
|
| 47 | 40 | oveq2d 6010 |
. . . . . . 7
|
| 48 | 47 | breq2d 4094 |
. . . . . 6
|
| 49 | 46, 48 | bitr4d 191 |
. . . . 5
|
| 50 | 43, 49 | anbi12d 473 |
. . . 4
|
| 51 | 26, 28, 50 | 3imtr3d 202 |
. . 3
|
| 52 | 51 | ralrimiva 2603 |
. 2
|
| 53 | 52 | ralrimiva 2603 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-cnex 8078 ax-resscn 8079 ax-1cn 8080 ax-1re 8081 ax-icn 8082 ax-addcl 8083 ax-addrcl 8084 ax-mulcl 8085 ax-mulrcl 8086 ax-addcom 8087 ax-mulcom 8088 ax-addass 8089 ax-mulass 8090 ax-distr 8091 ax-i2m1 8092 ax-0lt1 8093 ax-1rid 8094 ax-0id 8095 ax-rnegex 8096 ax-precex 8097 ax-cnre 8098 ax-pre-ltirr 8099 ax-pre-ltwlin 8100 ax-pre-lttrn 8101 ax-pre-apti 8102 ax-pre-ltadd 8103 ax-pre-mulgt0 8104 ax-pre-mulext 8105 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4381 df-po 4384 df-iso 4385 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-fv 5322 df-riota 5947 df-ov 5997 df-oprab 5998 df-mpo 5999 df-pnf 8171 df-mnf 8172 df-xr 8173 df-ltxr 8174 df-le 8175 df-sub 8307 df-neg 8308 df-reap 8710 df-ap 8717 df-div 8808 df-inn 9099 df-z 9435 df-uz 9711 |
| This theorem is referenced by: caucvgre 11478 |
| Copyright terms: Public domain | W3C validator |