ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgrelemcau Unicode version

Theorem caucvgrelemcau 11341
Description: Lemma for caucvgre 11342. Converting the Cauchy condition. (Contributed by Jim Kingdon, 20-Jul-2021.)
Hypotheses
Ref Expression
caucvgre.f  |-  ( ph  ->  F : NN --> RR )
caucvgre.cau  |-  ( ph  ->  A. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( ( F `  n )  <  ( ( F `
 k )  +  ( 1  /  n
) )  /\  ( F `  k )  <  ( ( F `  n )  +  ( 1  /  n ) ) ) )
Assertion
Ref Expression
caucvgrelemcau  |-  ( ph  ->  A. n  e.  NN  A. k  e.  NN  (
n  <RR  k  ->  (
( F `  n
)  <RR  ( ( F `
 k )  +  ( iota_ r  e.  RR  ( n  x.  r
)  =  1 ) )  /\  ( F `
 k )  <RR  ( ( F `  n
)  +  ( iota_ r  e.  RR  ( n  x.  r )  =  1 ) ) ) ) )
Distinct variable groups:    k, F, n    ph, k, n    k, r, n
Allowed substitution hints:    ph( r)    F( r)

Proof of Theorem caucvgrelemcau
StepHypRef Expression
1 simplr 528 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  n  e.  NN )
21nnred 9062 . . . . . 6  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  n  e.  RR )
3 simpr 110 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  k  e.  NN )
43nnred 9062 . . . . . 6  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  k  e.  RR )
5 ltle 8173 . . . . . 6  |-  ( ( n  e.  RR  /\  k  e.  RR )  ->  ( n  <  k  ->  n  <_  k )
)
62, 4, 5syl2anc 411 . . . . 5  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  (
n  <  k  ->  n  <_  k ) )
7 eluznn 9734 . . . . . . . . . . . 12  |-  ( ( n  e.  NN  /\  k  e.  ( ZZ>= `  n ) )  -> 
k  e.  NN )
87ex 115 . . . . . . . . . . 11  |-  ( n  e.  NN  ->  (
k  e.  ( ZZ>= `  n )  ->  k  e.  NN ) )
9 nnz 9404 . . . . . . . . . . . . 13  |-  ( n  e.  NN  ->  n  e.  ZZ )
10 eluz1 9665 . . . . . . . . . . . . 13  |-  ( n  e.  ZZ  ->  (
k  e.  ( ZZ>= `  n )  <->  ( k  e.  ZZ  /\  n  <_ 
k ) ) )
119, 10syl 14 . . . . . . . . . . . 12  |-  ( n  e.  NN  ->  (
k  e.  ( ZZ>= `  n )  <->  ( k  e.  ZZ  /\  n  <_ 
k ) ) )
12 simpr 110 . . . . . . . . . . . 12  |-  ( ( k  e.  ZZ  /\  n  <_  k )  ->  n  <_  k )
1311, 12biimtrdi 163 . . . . . . . . . . 11  |-  ( n  e.  NN  ->  (
k  e.  ( ZZ>= `  n )  ->  n  <_  k ) )
148, 13jcad 307 . . . . . . . . . 10  |-  ( n  e.  NN  ->  (
k  e.  ( ZZ>= `  n )  ->  (
k  e.  NN  /\  n  <_  k ) ) )
15 nnz 9404 . . . . . . . . . . . 12  |-  ( k  e.  NN  ->  k  e.  ZZ )
1615anim1i 340 . . . . . . . . . . 11  |-  ( ( k  e.  NN  /\  n  <_  k )  -> 
( k  e.  ZZ  /\  n  <_  k )
)
1716, 11imbitrrid 156 . . . . . . . . . 10  |-  ( n  e.  NN  ->  (
( k  e.  NN  /\  n  <_  k )  ->  k  e.  ( ZZ>= `  n ) ) )
1814, 17impbid 129 . . . . . . . . 9  |-  ( n  e.  NN  ->  (
k  e.  ( ZZ>= `  n )  <->  ( k  e.  NN  /\  n  <_ 
k ) ) )
1918adantl 277 . . . . . . . 8  |-  ( (
ph  /\  n  e.  NN )  ->  ( k  e.  ( ZZ>= `  n
)  <->  ( k  e.  NN  /\  n  <_ 
k ) ) )
2019biimpar 297 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  NN )  /\  (
k  e.  NN  /\  n  <_  k ) )  ->  k  e.  (
ZZ>= `  n ) )
21 caucvgre.cau . . . . . . . . 9  |-  ( ph  ->  A. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( ( F `  n )  <  ( ( F `
 k )  +  ( 1  /  n
) )  /\  ( F `  k )  <  ( ( F `  n )  +  ( 1  /  n ) ) ) )
2221r19.21bi 2595 . . . . . . . 8  |-  ( (
ph  /\  n  e.  NN )  ->  A. k  e.  ( ZZ>= `  n )
( ( F `  n )  <  (
( F `  k
)  +  ( 1  /  n ) )  /\  ( F `  k )  <  (
( F `  n
)  +  ( 1  /  n ) ) ) )
2322r19.21bi 2595 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( F `  n )  <  ( ( F `  k )  +  ( 1  /  n ) )  /\  ( F `
 k )  < 
( ( F `  n )  +  ( 1  /  n ) ) ) )
2420, 23syldan 282 . . . . . 6  |-  ( ( ( ph  /\  n  e.  NN )  /\  (
k  e.  NN  /\  n  <_  k ) )  ->  ( ( F `
 n )  < 
( ( F `  k )  +  ( 1  /  n ) )  /\  ( F `
 k )  < 
( ( F `  n )  +  ( 1  /  n ) ) ) )
2524expr 375 . . . . 5  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  (
n  <_  k  ->  ( ( F `  n
)  <  ( ( F `  k )  +  ( 1  /  n ) )  /\  ( F `  k )  <  ( ( F `
 n )  +  ( 1  /  n
) ) ) ) )
266, 25syld 45 . . . 4  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  (
n  <  k  ->  ( ( F `  n
)  <  ( ( F `  k )  +  ( 1  /  n ) )  /\  ( F `  k )  <  ( ( F `
 n )  +  ( 1  /  n
) ) ) ) )
27 ltxrlt 8151 . . . . 5  |-  ( ( n  e.  RR  /\  k  e.  RR )  ->  ( n  <  k  <->  n 
<RR  k ) )
282, 4, 27syl2anc 411 . . . 4  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  (
n  <  k  <->  n  <RR  k ) )
29 caucvgre.f . . . . . . . . 9  |-  ( ph  ->  F : NN --> RR )
3029ad2antrr 488 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  F : NN --> RR )
3130, 1ffvelcdmd 5726 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  ( F `  n )  e.  RR )
3230, 3ffvelcdmd 5726 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  ( F `  k )  e.  RR )
331nnrecred 9096 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  (
1  /  n )  e.  RR )
3432, 33readdcld 8115 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  (
( F `  k
)  +  ( 1  /  n ) )  e.  RR )
35 ltxrlt 8151 . . . . . . 7  |-  ( ( ( F `  n
)  e.  RR  /\  ( ( F `  k )  +  ( 1  /  n ) )  e.  RR )  ->  ( ( F `
 n )  < 
( ( F `  k )  +  ( 1  /  n ) )  <->  ( F `  n )  <RR  ( ( F `  k )  +  ( 1  /  n ) ) ) )
3631, 34, 35syl2anc 411 . . . . . 6  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  (
( F `  n
)  <  ( ( F `  k )  +  ( 1  /  n ) )  <->  ( F `  n )  <RR  ( ( F `  k )  +  ( 1  /  n ) ) ) )
37 nnap0 9078 . . . . . . . . . 10  |-  ( n  e.  NN  ->  n #  0 )
381, 37syl 14 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  n #  0 )
39 caucvgrelemrec 11340 . . . . . . . . 9  |-  ( ( n  e.  RR  /\  n #  0 )  ->  ( iota_ r  e.  RR  (
n  x.  r )  =  1 )  =  ( 1  /  n
) )
402, 38, 39syl2anc 411 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  ( iota_ r  e.  RR  (
n  x.  r )  =  1 )  =  ( 1  /  n
) )
4140oveq2d 5970 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  (
( F `  k
)  +  ( iota_ r  e.  RR  ( n  x.  r )  =  1 ) )  =  ( ( F `  k )  +  ( 1  /  n ) ) )
4241breq2d 4060 . . . . . 6  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  (
( F `  n
)  <RR  ( ( F `
 k )  +  ( iota_ r  e.  RR  ( n  x.  r
)  =  1 ) )  <->  ( F `  n )  <RR  ( ( F `  k )  +  ( 1  /  n ) ) ) )
4336, 42bitr4d 191 . . . . 5  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  (
( F `  n
)  <  ( ( F `  k )  +  ( 1  /  n ) )  <->  ( F `  n )  <RR  ( ( F `  k )  +  ( iota_ r  e.  RR  ( n  x.  r )  =  1 ) ) ) )
4431, 33readdcld 8115 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  (
( F `  n
)  +  ( 1  /  n ) )  e.  RR )
45 ltxrlt 8151 . . . . . . 7  |-  ( ( ( F `  k
)  e.  RR  /\  ( ( F `  n )  +  ( 1  /  n ) )  e.  RR )  ->  ( ( F `
 k )  < 
( ( F `  n )  +  ( 1  /  n ) )  <->  ( F `  k )  <RR  ( ( F `  n )  +  ( 1  /  n ) ) ) )
4632, 44, 45syl2anc 411 . . . . . 6  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  (
( F `  k
)  <  ( ( F `  n )  +  ( 1  /  n ) )  <->  ( F `  k )  <RR  ( ( F `  n )  +  ( 1  /  n ) ) ) )
4740oveq2d 5970 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  (
( F `  n
)  +  ( iota_ r  e.  RR  ( n  x.  r )  =  1 ) )  =  ( ( F `  n )  +  ( 1  /  n ) ) )
4847breq2d 4060 . . . . . 6  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  (
( F `  k
)  <RR  ( ( F `
 n )  +  ( iota_ r  e.  RR  ( n  x.  r
)  =  1 ) )  <->  ( F `  k )  <RR  ( ( F `  n )  +  ( 1  /  n ) ) ) )
4946, 48bitr4d 191 . . . . 5  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  (
( F `  k
)  <  ( ( F `  n )  +  ( 1  /  n ) )  <->  ( F `  k )  <RR  ( ( F `  n )  +  ( iota_ r  e.  RR  ( n  x.  r )  =  1 ) ) ) )
5043, 49anbi12d 473 . . . 4  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  (
( ( F `  n )  <  (
( F `  k
)  +  ( 1  /  n ) )  /\  ( F `  k )  <  (
( F `  n
)  +  ( 1  /  n ) ) )  <->  ( ( F `
 n )  <RR  ( ( F `  k
)  +  ( iota_ r  e.  RR  ( n  x.  r )  =  1 ) )  /\  ( F `  k ) 
<RR  ( ( F `  n )  +  (
iota_ r  e.  RR  ( n  x.  r
)  =  1 ) ) ) ) )
5126, 28, 503imtr3d 202 . . 3  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  (
n  <RR  k  ->  (
( F `  n
)  <RR  ( ( F `
 k )  +  ( iota_ r  e.  RR  ( n  x.  r
)  =  1 ) )  /\  ( F `
 k )  <RR  ( ( F `  n
)  +  ( iota_ r  e.  RR  ( n  x.  r )  =  1 ) ) ) ) )
5251ralrimiva 2580 . 2  |-  ( (
ph  /\  n  e.  NN )  ->  A. k  e.  NN  ( n  <RR  k  ->  ( ( F `
 n )  <RR  ( ( F `  k
)  +  ( iota_ r  e.  RR  ( n  x.  r )  =  1 ) )  /\  ( F `  k ) 
<RR  ( ( F `  n )  +  (
iota_ r  e.  RR  ( n  x.  r
)  =  1 ) ) ) ) )
5352ralrimiva 2580 1  |-  ( ph  ->  A. n  e.  NN  A. k  e.  NN  (
n  <RR  k  ->  (
( F `  n
)  <RR  ( ( F `
 k )  +  ( iota_ r  e.  RR  ( n  x.  r
)  =  1 ) )  /\  ( F `
 k )  <RR  ( ( F `  n
)  +  ( iota_ r  e.  RR  ( n  x.  r )  =  1 ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2177   A.wral 2485   class class class wbr 4048   -->wf 5273   ` cfv 5277   iota_crio 5908  (class class class)co 5954   RRcr 7937   0cc0 7938   1c1 7939    + caddc 7941    <RR cltrr 7942    x. cmul 7943    < clt 8120    <_ cle 8121   # cap 8667    / cdiv 8758   NNcn 9049   ZZcz 9385   ZZ>=cuz 9661
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4167  ax-pow 4223  ax-pr 4258  ax-un 4485  ax-setind 4590  ax-cnex 8029  ax-resscn 8030  ax-1cn 8031  ax-1re 8032  ax-icn 8033  ax-addcl 8034  ax-addrcl 8035  ax-mulcl 8036  ax-mulrcl 8037  ax-addcom 8038  ax-mulcom 8039  ax-addass 8040  ax-mulass 8041  ax-distr 8042  ax-i2m1 8043  ax-0lt1 8044  ax-1rid 8045  ax-0id 8046  ax-rnegex 8047  ax-precex 8048  ax-cnre 8049  ax-pre-ltirr 8050  ax-pre-ltwlin 8051  ax-pre-lttrn 8052  ax-pre-apti 8053  ax-pre-ltadd 8054  ax-pre-mulgt0 8055  ax-pre-mulext 8056
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3001  df-dif 3170  df-un 3172  df-in 3174  df-ss 3181  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-int 3889  df-br 4049  df-opab 4111  df-mpt 4112  df-id 4345  df-po 4348  df-iso 4349  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-dm 4690  df-rn 4691  df-res 4692  df-ima 4693  df-iota 5238  df-fun 5279  df-fn 5280  df-f 5281  df-fv 5285  df-riota 5909  df-ov 5957  df-oprab 5958  df-mpo 5959  df-pnf 8122  df-mnf 8123  df-xr 8124  df-ltxr 8125  df-le 8126  df-sub 8258  df-neg 8259  df-reap 8661  df-ap 8668  df-div 8759  df-inn 9050  df-z 9386  df-uz 9662
This theorem is referenced by:  caucvgre  11342
  Copyright terms: Public domain W3C validator