ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgrelemcau Unicode version

Theorem caucvgrelemcau 10991
Description: Lemma for caucvgre 10992. Converting the Cauchy condition. (Contributed by Jim Kingdon, 20-Jul-2021.)
Hypotheses
Ref Expression
caucvgre.f  |-  ( ph  ->  F : NN --> RR )
caucvgre.cau  |-  ( ph  ->  A. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( ( F `  n )  <  ( ( F `
 k )  +  ( 1  /  n
) )  /\  ( F `  k )  <  ( ( F `  n )  +  ( 1  /  n ) ) ) )
Assertion
Ref Expression
caucvgrelemcau  |-  ( ph  ->  A. n  e.  NN  A. k  e.  NN  (
n  <RR  k  ->  (
( F `  n
)  <RR  ( ( F `
 k )  +  ( iota_ r  e.  RR  ( n  x.  r
)  =  1 ) )  /\  ( F `
 k )  <RR  ( ( F `  n
)  +  ( iota_ r  e.  RR  ( n  x.  r )  =  1 ) ) ) ) )
Distinct variable groups:    k, F, n    ph, k, n    k, r, n
Allowed substitution hints:    ph( r)    F( r)

Proof of Theorem caucvgrelemcau
StepHypRef Expression
1 simplr 528 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  n  e.  NN )
21nnred 8934 . . . . . 6  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  n  e.  RR )
3 simpr 110 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  k  e.  NN )
43nnred 8934 . . . . . 6  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  k  e.  RR )
5 ltle 8047 . . . . . 6  |-  ( ( n  e.  RR  /\  k  e.  RR )  ->  ( n  <  k  ->  n  <_  k )
)
62, 4, 5syl2anc 411 . . . . 5  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  (
n  <  k  ->  n  <_  k ) )
7 eluznn 9602 . . . . . . . . . . . 12  |-  ( ( n  e.  NN  /\  k  e.  ( ZZ>= `  n ) )  -> 
k  e.  NN )
87ex 115 . . . . . . . . . . 11  |-  ( n  e.  NN  ->  (
k  e.  ( ZZ>= `  n )  ->  k  e.  NN ) )
9 nnz 9274 . . . . . . . . . . . . 13  |-  ( n  e.  NN  ->  n  e.  ZZ )
10 eluz1 9534 . . . . . . . . . . . . 13  |-  ( n  e.  ZZ  ->  (
k  e.  ( ZZ>= `  n )  <->  ( k  e.  ZZ  /\  n  <_ 
k ) ) )
119, 10syl 14 . . . . . . . . . . . 12  |-  ( n  e.  NN  ->  (
k  e.  ( ZZ>= `  n )  <->  ( k  e.  ZZ  /\  n  <_ 
k ) ) )
12 simpr 110 . . . . . . . . . . . 12  |-  ( ( k  e.  ZZ  /\  n  <_  k )  ->  n  <_  k )
1311, 12biimtrdi 163 . . . . . . . . . . 11  |-  ( n  e.  NN  ->  (
k  e.  ( ZZ>= `  n )  ->  n  <_  k ) )
148, 13jcad 307 . . . . . . . . . 10  |-  ( n  e.  NN  ->  (
k  e.  ( ZZ>= `  n )  ->  (
k  e.  NN  /\  n  <_  k ) ) )
15 nnz 9274 . . . . . . . . . . . 12  |-  ( k  e.  NN  ->  k  e.  ZZ )
1615anim1i 340 . . . . . . . . . . 11  |-  ( ( k  e.  NN  /\  n  <_  k )  -> 
( k  e.  ZZ  /\  n  <_  k )
)
1716, 11imbitrrid 156 . . . . . . . . . 10  |-  ( n  e.  NN  ->  (
( k  e.  NN  /\  n  <_  k )  ->  k  e.  ( ZZ>= `  n ) ) )
1814, 17impbid 129 . . . . . . . . 9  |-  ( n  e.  NN  ->  (
k  e.  ( ZZ>= `  n )  <->  ( k  e.  NN  /\  n  <_ 
k ) ) )
1918adantl 277 . . . . . . . 8  |-  ( (
ph  /\  n  e.  NN )  ->  ( k  e.  ( ZZ>= `  n
)  <->  ( k  e.  NN  /\  n  <_ 
k ) ) )
2019biimpar 297 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  NN )  /\  (
k  e.  NN  /\  n  <_  k ) )  ->  k  e.  (
ZZ>= `  n ) )
21 caucvgre.cau . . . . . . . . 9  |-  ( ph  ->  A. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( ( F `  n )  <  ( ( F `
 k )  +  ( 1  /  n
) )  /\  ( F `  k )  <  ( ( F `  n )  +  ( 1  /  n ) ) ) )
2221r19.21bi 2565 . . . . . . . 8  |-  ( (
ph  /\  n  e.  NN )  ->  A. k  e.  ( ZZ>= `  n )
( ( F `  n )  <  (
( F `  k
)  +  ( 1  /  n ) )  /\  ( F `  k )  <  (
( F `  n
)  +  ( 1  /  n ) ) ) )
2322r19.21bi 2565 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( F `  n )  <  ( ( F `  k )  +  ( 1  /  n ) )  /\  ( F `
 k )  < 
( ( F `  n )  +  ( 1  /  n ) ) ) )
2420, 23syldan 282 . . . . . 6  |-  ( ( ( ph  /\  n  e.  NN )  /\  (
k  e.  NN  /\  n  <_  k ) )  ->  ( ( F `
 n )  < 
( ( F `  k )  +  ( 1  /  n ) )  /\  ( F `
 k )  < 
( ( F `  n )  +  ( 1  /  n ) ) ) )
2524expr 375 . . . . 5  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  (
n  <_  k  ->  ( ( F `  n
)  <  ( ( F `  k )  +  ( 1  /  n ) )  /\  ( F `  k )  <  ( ( F `
 n )  +  ( 1  /  n
) ) ) ) )
266, 25syld 45 . . . 4  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  (
n  <  k  ->  ( ( F `  n
)  <  ( ( F `  k )  +  ( 1  /  n ) )  /\  ( F `  k )  <  ( ( F `
 n )  +  ( 1  /  n
) ) ) ) )
27 ltxrlt 8025 . . . . 5  |-  ( ( n  e.  RR  /\  k  e.  RR )  ->  ( n  <  k  <->  n 
<RR  k ) )
282, 4, 27syl2anc 411 . . . 4  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  (
n  <  k  <->  n  <RR  k ) )
29 caucvgre.f . . . . . . . . 9  |-  ( ph  ->  F : NN --> RR )
3029ad2antrr 488 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  F : NN --> RR )
3130, 1ffvelcdmd 5654 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  ( F `  n )  e.  RR )
3230, 3ffvelcdmd 5654 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  ( F `  k )  e.  RR )
331nnrecred 8968 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  (
1  /  n )  e.  RR )
3432, 33readdcld 7989 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  (
( F `  k
)  +  ( 1  /  n ) )  e.  RR )
35 ltxrlt 8025 . . . . . . 7  |-  ( ( ( F `  n
)  e.  RR  /\  ( ( F `  k )  +  ( 1  /  n ) )  e.  RR )  ->  ( ( F `
 n )  < 
( ( F `  k )  +  ( 1  /  n ) )  <->  ( F `  n )  <RR  ( ( F `  k )  +  ( 1  /  n ) ) ) )
3631, 34, 35syl2anc 411 . . . . . 6  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  (
( F `  n
)  <  ( ( F `  k )  +  ( 1  /  n ) )  <->  ( F `  n )  <RR  ( ( F `  k )  +  ( 1  /  n ) ) ) )
37 nnap0 8950 . . . . . . . . . 10  |-  ( n  e.  NN  ->  n #  0 )
381, 37syl 14 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  n #  0 )
39 caucvgrelemrec 10990 . . . . . . . . 9  |-  ( ( n  e.  RR  /\  n #  0 )  ->  ( iota_ r  e.  RR  (
n  x.  r )  =  1 )  =  ( 1  /  n
) )
402, 38, 39syl2anc 411 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  ( iota_ r  e.  RR  (
n  x.  r )  =  1 )  =  ( 1  /  n
) )
4140oveq2d 5893 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  (
( F `  k
)  +  ( iota_ r  e.  RR  ( n  x.  r )  =  1 ) )  =  ( ( F `  k )  +  ( 1  /  n ) ) )
4241breq2d 4017 . . . . . 6  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  (
( F `  n
)  <RR  ( ( F `
 k )  +  ( iota_ r  e.  RR  ( n  x.  r
)  =  1 ) )  <->  ( F `  n )  <RR  ( ( F `  k )  +  ( 1  /  n ) ) ) )
4336, 42bitr4d 191 . . . . 5  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  (
( F `  n
)  <  ( ( F `  k )  +  ( 1  /  n ) )  <->  ( F `  n )  <RR  ( ( F `  k )  +  ( iota_ r  e.  RR  ( n  x.  r )  =  1 ) ) ) )
4431, 33readdcld 7989 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  (
( F `  n
)  +  ( 1  /  n ) )  e.  RR )
45 ltxrlt 8025 . . . . . . 7  |-  ( ( ( F `  k
)  e.  RR  /\  ( ( F `  n )  +  ( 1  /  n ) )  e.  RR )  ->  ( ( F `
 k )  < 
( ( F `  n )  +  ( 1  /  n ) )  <->  ( F `  k )  <RR  ( ( F `  n )  +  ( 1  /  n ) ) ) )
4632, 44, 45syl2anc 411 . . . . . 6  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  (
( F `  k
)  <  ( ( F `  n )  +  ( 1  /  n ) )  <->  ( F `  k )  <RR  ( ( F `  n )  +  ( 1  /  n ) ) ) )
4740oveq2d 5893 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  (
( F `  n
)  +  ( iota_ r  e.  RR  ( n  x.  r )  =  1 ) )  =  ( ( F `  n )  +  ( 1  /  n ) ) )
4847breq2d 4017 . . . . . 6  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  (
( F `  k
)  <RR  ( ( F `
 n )  +  ( iota_ r  e.  RR  ( n  x.  r
)  =  1 ) )  <->  ( F `  k )  <RR  ( ( F `  n )  +  ( 1  /  n ) ) ) )
4946, 48bitr4d 191 . . . . 5  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  (
( F `  k
)  <  ( ( F `  n )  +  ( 1  /  n ) )  <->  ( F `  k )  <RR  ( ( F `  n )  +  ( iota_ r  e.  RR  ( n  x.  r )  =  1 ) ) ) )
5043, 49anbi12d 473 . . . 4  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  (
( ( F `  n )  <  (
( F `  k
)  +  ( 1  /  n ) )  /\  ( F `  k )  <  (
( F `  n
)  +  ( 1  /  n ) ) )  <->  ( ( F `
 n )  <RR  ( ( F `  k
)  +  ( iota_ r  e.  RR  ( n  x.  r )  =  1 ) )  /\  ( F `  k ) 
<RR  ( ( F `  n )  +  (
iota_ r  e.  RR  ( n  x.  r
)  =  1 ) ) ) ) )
5126, 28, 503imtr3d 202 . . 3  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  (
n  <RR  k  ->  (
( F `  n
)  <RR  ( ( F `
 k )  +  ( iota_ r  e.  RR  ( n  x.  r
)  =  1 ) )  /\  ( F `
 k )  <RR  ( ( F `  n
)  +  ( iota_ r  e.  RR  ( n  x.  r )  =  1 ) ) ) ) )
5251ralrimiva 2550 . 2  |-  ( (
ph  /\  n  e.  NN )  ->  A. k  e.  NN  ( n  <RR  k  ->  ( ( F `
 n )  <RR  ( ( F `  k
)  +  ( iota_ r  e.  RR  ( n  x.  r )  =  1 ) )  /\  ( F `  k ) 
<RR  ( ( F `  n )  +  (
iota_ r  e.  RR  ( n  x.  r
)  =  1 ) ) ) ) )
5352ralrimiva 2550 1  |-  ( ph  ->  A. n  e.  NN  A. k  e.  NN  (
n  <RR  k  ->  (
( F `  n
)  <RR  ( ( F `
 k )  +  ( iota_ r  e.  RR  ( n  x.  r
)  =  1 ) )  /\  ( F `
 k )  <RR  ( ( F `  n
)  +  ( iota_ r  e.  RR  ( n  x.  r )  =  1 ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148   A.wral 2455   class class class wbr 4005   -->wf 5214   ` cfv 5218   iota_crio 5832  (class class class)co 5877   RRcr 7812   0cc0 7813   1c1 7814    + caddc 7816    <RR cltrr 7817    x. cmul 7818    < clt 7994    <_ cle 7995   # cap 8540    / cdiv 8631   NNcn 8921   ZZcz 9255   ZZ>=cuz 9530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-mulrcl 7912  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-precex 7923  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929  ax-pre-mulgt0 7930  ax-pre-mulext 7931
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-po 4298  df-iso 4299  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-reap 8534  df-ap 8541  df-div 8632  df-inn 8922  df-z 9256  df-uz 9531
This theorem is referenced by:  caucvgre  10992
  Copyright terms: Public domain W3C validator