ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgrelemcau Unicode version

Theorem caucvgrelemcau 11020
Description: Lemma for caucvgre 11021. Converting the Cauchy condition. (Contributed by Jim Kingdon, 20-Jul-2021.)
Hypotheses
Ref Expression
caucvgre.f  |-  ( ph  ->  F : NN --> RR )
caucvgre.cau  |-  ( ph  ->  A. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( ( F `  n )  <  ( ( F `
 k )  +  ( 1  /  n
) )  /\  ( F `  k )  <  ( ( F `  n )  +  ( 1  /  n ) ) ) )
Assertion
Ref Expression
caucvgrelemcau  |-  ( ph  ->  A. n  e.  NN  A. k  e.  NN  (
n  <RR  k  ->  (
( F `  n
)  <RR  ( ( F `
 k )  +  ( iota_ r  e.  RR  ( n  x.  r
)  =  1 ) )  /\  ( F `
 k )  <RR  ( ( F `  n
)  +  ( iota_ r  e.  RR  ( n  x.  r )  =  1 ) ) ) ) )
Distinct variable groups:    k, F, n    ph, k, n    k, r, n
Allowed substitution hints:    ph( r)    F( r)

Proof of Theorem caucvgrelemcau
StepHypRef Expression
1 simplr 528 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  n  e.  NN )
21nnred 8961 . . . . . 6  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  n  e.  RR )
3 simpr 110 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  k  e.  NN )
43nnred 8961 . . . . . 6  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  k  e.  RR )
5 ltle 8074 . . . . . 6  |-  ( ( n  e.  RR  /\  k  e.  RR )  ->  ( n  <  k  ->  n  <_  k )
)
62, 4, 5syl2anc 411 . . . . 5  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  (
n  <  k  ->  n  <_  k ) )
7 eluznn 9629 . . . . . . . . . . . 12  |-  ( ( n  e.  NN  /\  k  e.  ( ZZ>= `  n ) )  -> 
k  e.  NN )
87ex 115 . . . . . . . . . . 11  |-  ( n  e.  NN  ->  (
k  e.  ( ZZ>= `  n )  ->  k  e.  NN ) )
9 nnz 9301 . . . . . . . . . . . . 13  |-  ( n  e.  NN  ->  n  e.  ZZ )
10 eluz1 9561 . . . . . . . . . . . . 13  |-  ( n  e.  ZZ  ->  (
k  e.  ( ZZ>= `  n )  <->  ( k  e.  ZZ  /\  n  <_ 
k ) ) )
119, 10syl 14 . . . . . . . . . . . 12  |-  ( n  e.  NN  ->  (
k  e.  ( ZZ>= `  n )  <->  ( k  e.  ZZ  /\  n  <_ 
k ) ) )
12 simpr 110 . . . . . . . . . . . 12  |-  ( ( k  e.  ZZ  /\  n  <_  k )  ->  n  <_  k )
1311, 12biimtrdi 163 . . . . . . . . . . 11  |-  ( n  e.  NN  ->  (
k  e.  ( ZZ>= `  n )  ->  n  <_  k ) )
148, 13jcad 307 . . . . . . . . . 10  |-  ( n  e.  NN  ->  (
k  e.  ( ZZ>= `  n )  ->  (
k  e.  NN  /\  n  <_  k ) ) )
15 nnz 9301 . . . . . . . . . . . 12  |-  ( k  e.  NN  ->  k  e.  ZZ )
1615anim1i 340 . . . . . . . . . . 11  |-  ( ( k  e.  NN  /\  n  <_  k )  -> 
( k  e.  ZZ  /\  n  <_  k )
)
1716, 11imbitrrid 156 . . . . . . . . . 10  |-  ( n  e.  NN  ->  (
( k  e.  NN  /\  n  <_  k )  ->  k  e.  ( ZZ>= `  n ) ) )
1814, 17impbid 129 . . . . . . . . 9  |-  ( n  e.  NN  ->  (
k  e.  ( ZZ>= `  n )  <->  ( k  e.  NN  /\  n  <_ 
k ) ) )
1918adantl 277 . . . . . . . 8  |-  ( (
ph  /\  n  e.  NN )  ->  ( k  e.  ( ZZ>= `  n
)  <->  ( k  e.  NN  /\  n  <_ 
k ) ) )
2019biimpar 297 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  NN )  /\  (
k  e.  NN  /\  n  <_  k ) )  ->  k  e.  (
ZZ>= `  n ) )
21 caucvgre.cau . . . . . . . . 9  |-  ( ph  ->  A. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( ( F `  n )  <  ( ( F `
 k )  +  ( 1  /  n
) )  /\  ( F `  k )  <  ( ( F `  n )  +  ( 1  /  n ) ) ) )
2221r19.21bi 2578 . . . . . . . 8  |-  ( (
ph  /\  n  e.  NN )  ->  A. k  e.  ( ZZ>= `  n )
( ( F `  n )  <  (
( F `  k
)  +  ( 1  /  n ) )  /\  ( F `  k )  <  (
( F `  n
)  +  ( 1  /  n ) ) ) )
2322r19.21bi 2578 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( F `  n )  <  ( ( F `  k )  +  ( 1  /  n ) )  /\  ( F `
 k )  < 
( ( F `  n )  +  ( 1  /  n ) ) ) )
2420, 23syldan 282 . . . . . 6  |-  ( ( ( ph  /\  n  e.  NN )  /\  (
k  e.  NN  /\  n  <_  k ) )  ->  ( ( F `
 n )  < 
( ( F `  k )  +  ( 1  /  n ) )  /\  ( F `
 k )  < 
( ( F `  n )  +  ( 1  /  n ) ) ) )
2524expr 375 . . . . 5  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  (
n  <_  k  ->  ( ( F `  n
)  <  ( ( F `  k )  +  ( 1  /  n ) )  /\  ( F `  k )  <  ( ( F `
 n )  +  ( 1  /  n
) ) ) ) )
266, 25syld 45 . . . 4  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  (
n  <  k  ->  ( ( F `  n
)  <  ( ( F `  k )  +  ( 1  /  n ) )  /\  ( F `  k )  <  ( ( F `
 n )  +  ( 1  /  n
) ) ) ) )
27 ltxrlt 8052 . . . . 5  |-  ( ( n  e.  RR  /\  k  e.  RR )  ->  ( n  <  k  <->  n 
<RR  k ) )
282, 4, 27syl2anc 411 . . . 4  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  (
n  <  k  <->  n  <RR  k ) )
29 caucvgre.f . . . . . . . . 9  |-  ( ph  ->  F : NN --> RR )
3029ad2antrr 488 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  F : NN --> RR )
3130, 1ffvelcdmd 5672 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  ( F `  n )  e.  RR )
3230, 3ffvelcdmd 5672 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  ( F `  k )  e.  RR )
331nnrecred 8995 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  (
1  /  n )  e.  RR )
3432, 33readdcld 8016 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  (
( F `  k
)  +  ( 1  /  n ) )  e.  RR )
35 ltxrlt 8052 . . . . . . 7  |-  ( ( ( F `  n
)  e.  RR  /\  ( ( F `  k )  +  ( 1  /  n ) )  e.  RR )  ->  ( ( F `
 n )  < 
( ( F `  k )  +  ( 1  /  n ) )  <->  ( F `  n )  <RR  ( ( F `  k )  +  ( 1  /  n ) ) ) )
3631, 34, 35syl2anc 411 . . . . . 6  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  (
( F `  n
)  <  ( ( F `  k )  +  ( 1  /  n ) )  <->  ( F `  n )  <RR  ( ( F `  k )  +  ( 1  /  n ) ) ) )
37 nnap0 8977 . . . . . . . . . 10  |-  ( n  e.  NN  ->  n #  0 )
381, 37syl 14 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  n #  0 )
39 caucvgrelemrec 11019 . . . . . . . . 9  |-  ( ( n  e.  RR  /\  n #  0 )  ->  ( iota_ r  e.  RR  (
n  x.  r )  =  1 )  =  ( 1  /  n
) )
402, 38, 39syl2anc 411 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  ( iota_ r  e.  RR  (
n  x.  r )  =  1 )  =  ( 1  /  n
) )
4140oveq2d 5911 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  (
( F `  k
)  +  ( iota_ r  e.  RR  ( n  x.  r )  =  1 ) )  =  ( ( F `  k )  +  ( 1  /  n ) ) )
4241breq2d 4030 . . . . . 6  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  (
( F `  n
)  <RR  ( ( F `
 k )  +  ( iota_ r  e.  RR  ( n  x.  r
)  =  1 ) )  <->  ( F `  n )  <RR  ( ( F `  k )  +  ( 1  /  n ) ) ) )
4336, 42bitr4d 191 . . . . 5  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  (
( F `  n
)  <  ( ( F `  k )  +  ( 1  /  n ) )  <->  ( F `  n )  <RR  ( ( F `  k )  +  ( iota_ r  e.  RR  ( n  x.  r )  =  1 ) ) ) )
4431, 33readdcld 8016 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  (
( F `  n
)  +  ( 1  /  n ) )  e.  RR )
45 ltxrlt 8052 . . . . . . 7  |-  ( ( ( F `  k
)  e.  RR  /\  ( ( F `  n )  +  ( 1  /  n ) )  e.  RR )  ->  ( ( F `
 k )  < 
( ( F `  n )  +  ( 1  /  n ) )  <->  ( F `  k )  <RR  ( ( F `  n )  +  ( 1  /  n ) ) ) )
4632, 44, 45syl2anc 411 . . . . . 6  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  (
( F `  k
)  <  ( ( F `  n )  +  ( 1  /  n ) )  <->  ( F `  k )  <RR  ( ( F `  n )  +  ( 1  /  n ) ) ) )
4740oveq2d 5911 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  (
( F `  n
)  +  ( iota_ r  e.  RR  ( n  x.  r )  =  1 ) )  =  ( ( F `  n )  +  ( 1  /  n ) ) )
4847breq2d 4030 . . . . . 6  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  (
( F `  k
)  <RR  ( ( F `
 n )  +  ( iota_ r  e.  RR  ( n  x.  r
)  =  1 ) )  <->  ( F `  k )  <RR  ( ( F `  n )  +  ( 1  /  n ) ) ) )
4946, 48bitr4d 191 . . . . 5  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  (
( F `  k
)  <  ( ( F `  n )  +  ( 1  /  n ) )  <->  ( F `  k )  <RR  ( ( F `  n )  +  ( iota_ r  e.  RR  ( n  x.  r )  =  1 ) ) ) )
5043, 49anbi12d 473 . . . 4  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  (
( ( F `  n )  <  (
( F `  k
)  +  ( 1  /  n ) )  /\  ( F `  k )  <  (
( F `  n
)  +  ( 1  /  n ) ) )  <->  ( ( F `
 n )  <RR  ( ( F `  k
)  +  ( iota_ r  e.  RR  ( n  x.  r )  =  1 ) )  /\  ( F `  k ) 
<RR  ( ( F `  n )  +  (
iota_ r  e.  RR  ( n  x.  r
)  =  1 ) ) ) ) )
5126, 28, 503imtr3d 202 . . 3  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  (
n  <RR  k  ->  (
( F `  n
)  <RR  ( ( F `
 k )  +  ( iota_ r  e.  RR  ( n  x.  r
)  =  1 ) )  /\  ( F `
 k )  <RR  ( ( F `  n
)  +  ( iota_ r  e.  RR  ( n  x.  r )  =  1 ) ) ) ) )
5251ralrimiva 2563 . 2  |-  ( (
ph  /\  n  e.  NN )  ->  A. k  e.  NN  ( n  <RR  k  ->  ( ( F `
 n )  <RR  ( ( F `  k
)  +  ( iota_ r  e.  RR  ( n  x.  r )  =  1 ) )  /\  ( F `  k ) 
<RR  ( ( F `  n )  +  (
iota_ r  e.  RR  ( n  x.  r
)  =  1 ) ) ) ) )
5352ralrimiva 2563 1  |-  ( ph  ->  A. n  e.  NN  A. k  e.  NN  (
n  <RR  k  ->  (
( F `  n
)  <RR  ( ( F `
 k )  +  ( iota_ r  e.  RR  ( n  x.  r
)  =  1 ) )  /\  ( F `
 k )  <RR  ( ( F `  n
)  +  ( iota_ r  e.  RR  ( n  x.  r )  =  1 ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2160   A.wral 2468   class class class wbr 4018   -->wf 5231   ` cfv 5235   iota_crio 5850  (class class class)co 5895   RRcr 7839   0cc0 7840   1c1 7841    + caddc 7843    <RR cltrr 7844    x. cmul 7845    < clt 8021    <_ cle 8022   # cap 8567    / cdiv 8658   NNcn 8948   ZZcz 9282   ZZ>=cuz 9557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7931  ax-resscn 7932  ax-1cn 7933  ax-1re 7934  ax-icn 7935  ax-addcl 7936  ax-addrcl 7937  ax-mulcl 7938  ax-mulrcl 7939  ax-addcom 7940  ax-mulcom 7941  ax-addass 7942  ax-mulass 7943  ax-distr 7944  ax-i2m1 7945  ax-0lt1 7946  ax-1rid 7947  ax-0id 7948  ax-rnegex 7949  ax-precex 7950  ax-cnre 7951  ax-pre-ltirr 7952  ax-pre-ltwlin 7953  ax-pre-lttrn 7954  ax-pre-apti 7955  ax-pre-ltadd 7956  ax-pre-mulgt0 7957  ax-pre-mulext 7958
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-po 4314  df-iso 4315  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-fv 5243  df-riota 5851  df-ov 5898  df-oprab 5899  df-mpo 5900  df-pnf 8023  df-mnf 8024  df-xr 8025  df-ltxr 8026  df-le 8027  df-sub 8159  df-neg 8160  df-reap 8561  df-ap 8568  df-div 8659  df-inn 8949  df-z 9283  df-uz 9558
This theorem is referenced by:  caucvgre  11021
  Copyright terms: Public domain W3C validator