| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > caucvgrelemcau | Unicode version | ||
| Description: Lemma for caucvgre 11342. Converting the Cauchy condition. (Contributed by Jim Kingdon, 20-Jul-2021.) |
| Ref | Expression |
|---|---|
| caucvgre.f |
|
| caucvgre.cau |
|
| Ref | Expression |
|---|---|
| caucvgrelemcau |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplr 528 |
. . . . . . 7
| |
| 2 | 1 | nnred 9062 |
. . . . . 6
|
| 3 | simpr 110 |
. . . . . . 7
| |
| 4 | 3 | nnred 9062 |
. . . . . 6
|
| 5 | ltle 8173 |
. . . . . 6
| |
| 6 | 2, 4, 5 | syl2anc 411 |
. . . . 5
|
| 7 | eluznn 9734 |
. . . . . . . . . . . 12
| |
| 8 | 7 | ex 115 |
. . . . . . . . . . 11
|
| 9 | nnz 9404 |
. . . . . . . . . . . . 13
| |
| 10 | eluz1 9665 |
. . . . . . . . . . . . 13
| |
| 11 | 9, 10 | syl 14 |
. . . . . . . . . . . 12
|
| 12 | simpr 110 |
. . . . . . . . . . . 12
| |
| 13 | 11, 12 | biimtrdi 163 |
. . . . . . . . . . 11
|
| 14 | 8, 13 | jcad 307 |
. . . . . . . . . 10
|
| 15 | nnz 9404 |
. . . . . . . . . . . 12
| |
| 16 | 15 | anim1i 340 |
. . . . . . . . . . 11
|
| 17 | 16, 11 | imbitrrid 156 |
. . . . . . . . . 10
|
| 18 | 14, 17 | impbid 129 |
. . . . . . . . 9
|
| 19 | 18 | adantl 277 |
. . . . . . . 8
|
| 20 | 19 | biimpar 297 |
. . . . . . 7
|
| 21 | caucvgre.cau |
. . . . . . . . 9
| |
| 22 | 21 | r19.21bi 2595 |
. . . . . . . 8
|
| 23 | 22 | r19.21bi 2595 |
. . . . . . 7
|
| 24 | 20, 23 | syldan 282 |
. . . . . 6
|
| 25 | 24 | expr 375 |
. . . . 5
|
| 26 | 6, 25 | syld 45 |
. . . 4
|
| 27 | ltxrlt 8151 |
. . . . 5
| |
| 28 | 2, 4, 27 | syl2anc 411 |
. . . 4
|
| 29 | caucvgre.f |
. . . . . . . . 9
| |
| 30 | 29 | ad2antrr 488 |
. . . . . . . 8
|
| 31 | 30, 1 | ffvelcdmd 5726 |
. . . . . . 7
|
| 32 | 30, 3 | ffvelcdmd 5726 |
. . . . . . . 8
|
| 33 | 1 | nnrecred 9096 |
. . . . . . . 8
|
| 34 | 32, 33 | readdcld 8115 |
. . . . . . 7
|
| 35 | ltxrlt 8151 |
. . . . . . 7
| |
| 36 | 31, 34, 35 | syl2anc 411 |
. . . . . 6
|
| 37 | nnap0 9078 |
. . . . . . . . . 10
| |
| 38 | 1, 37 | syl 14 |
. . . . . . . . 9
|
| 39 | caucvgrelemrec 11340 |
. . . . . . . . 9
| |
| 40 | 2, 38, 39 | syl2anc 411 |
. . . . . . . 8
|
| 41 | 40 | oveq2d 5970 |
. . . . . . 7
|
| 42 | 41 | breq2d 4060 |
. . . . . 6
|
| 43 | 36, 42 | bitr4d 191 |
. . . . 5
|
| 44 | 31, 33 | readdcld 8115 |
. . . . . . 7
|
| 45 | ltxrlt 8151 |
. . . . . . 7
| |
| 46 | 32, 44, 45 | syl2anc 411 |
. . . . . 6
|
| 47 | 40 | oveq2d 5970 |
. . . . . . 7
|
| 48 | 47 | breq2d 4060 |
. . . . . 6
|
| 49 | 46, 48 | bitr4d 191 |
. . . . 5
|
| 50 | 43, 49 | anbi12d 473 |
. . . 4
|
| 51 | 26, 28, 50 | 3imtr3d 202 |
. . 3
|
| 52 | 51 | ralrimiva 2580 |
. 2
|
| 53 | 52 | ralrimiva 2580 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4167 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-setind 4590 ax-cnex 8029 ax-resscn 8030 ax-1cn 8031 ax-1re 8032 ax-icn 8033 ax-addcl 8034 ax-addrcl 8035 ax-mulcl 8036 ax-mulrcl 8037 ax-addcom 8038 ax-mulcom 8039 ax-addass 8040 ax-mulass 8041 ax-distr 8042 ax-i2m1 8043 ax-0lt1 8044 ax-1rid 8045 ax-0id 8046 ax-rnegex 8047 ax-precex 8048 ax-cnre 8049 ax-pre-ltirr 8050 ax-pre-ltwlin 8051 ax-pre-lttrn 8052 ax-pre-apti 8053 ax-pre-ltadd 8054 ax-pre-mulgt0 8055 ax-pre-mulext 8056 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3001 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-int 3889 df-br 4049 df-opab 4111 df-mpt 4112 df-id 4345 df-po 4348 df-iso 4349 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-rn 4691 df-res 4692 df-ima 4693 df-iota 5238 df-fun 5279 df-fn 5280 df-f 5281 df-fv 5285 df-riota 5909 df-ov 5957 df-oprab 5958 df-mpo 5959 df-pnf 8122 df-mnf 8123 df-xr 8124 df-ltxr 8125 df-le 8126 df-sub 8258 df-neg 8259 df-reap 8661 df-ap 8668 df-div 8759 df-inn 9050 df-z 9386 df-uz 9662 |
| This theorem is referenced by: caucvgre 11342 |
| Copyright terms: Public domain | W3C validator |