ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgrelemcau Unicode version

Theorem caucvgrelemcau 10764
Description: Lemma for caucvgre 10765. Converting the Cauchy condition. (Contributed by Jim Kingdon, 20-Jul-2021.)
Hypotheses
Ref Expression
caucvgre.f  |-  ( ph  ->  F : NN --> RR )
caucvgre.cau  |-  ( ph  ->  A. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( ( F `  n )  <  ( ( F `
 k )  +  ( 1  /  n
) )  /\  ( F `  k )  <  ( ( F `  n )  +  ( 1  /  n ) ) ) )
Assertion
Ref Expression
caucvgrelemcau  |-  ( ph  ->  A. n  e.  NN  A. k  e.  NN  (
n  <RR  k  ->  (
( F `  n
)  <RR  ( ( F `
 k )  +  ( iota_ r  e.  RR  ( n  x.  r
)  =  1 ) )  /\  ( F `
 k )  <RR  ( ( F `  n
)  +  ( iota_ r  e.  RR  ( n  x.  r )  =  1 ) ) ) ) )
Distinct variable groups:    k, F, n    ph, k, n    k, r, n
Allowed substitution hints:    ph( r)    F( r)

Proof of Theorem caucvgrelemcau
StepHypRef Expression
1 simplr 519 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  n  e.  NN )
21nnred 8745 . . . . . 6  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  n  e.  RR )
3 simpr 109 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  k  e.  NN )
43nnred 8745 . . . . . 6  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  k  e.  RR )
5 ltle 7863 . . . . . 6  |-  ( ( n  e.  RR  /\  k  e.  RR )  ->  ( n  <  k  ->  n  <_  k )
)
62, 4, 5syl2anc 408 . . . . 5  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  (
n  <  k  ->  n  <_  k ) )
7 eluznn 9406 . . . . . . . . . . . 12  |-  ( ( n  e.  NN  /\  k  e.  ( ZZ>= `  n ) )  -> 
k  e.  NN )
87ex 114 . . . . . . . . . . 11  |-  ( n  e.  NN  ->  (
k  e.  ( ZZ>= `  n )  ->  k  e.  NN ) )
9 nnz 9085 . . . . . . . . . . . . 13  |-  ( n  e.  NN  ->  n  e.  ZZ )
10 eluz1 9342 . . . . . . . . . . . . 13  |-  ( n  e.  ZZ  ->  (
k  e.  ( ZZ>= `  n )  <->  ( k  e.  ZZ  /\  n  <_ 
k ) ) )
119, 10syl 14 . . . . . . . . . . . 12  |-  ( n  e.  NN  ->  (
k  e.  ( ZZ>= `  n )  <->  ( k  e.  ZZ  /\  n  <_ 
k ) ) )
12 simpr 109 . . . . . . . . . . . 12  |-  ( ( k  e.  ZZ  /\  n  <_  k )  ->  n  <_  k )
1311, 12syl6bi 162 . . . . . . . . . . 11  |-  ( n  e.  NN  ->  (
k  e.  ( ZZ>= `  n )  ->  n  <_  k ) )
148, 13jcad 305 . . . . . . . . . 10  |-  ( n  e.  NN  ->  (
k  e.  ( ZZ>= `  n )  ->  (
k  e.  NN  /\  n  <_  k ) ) )
15 nnz 9085 . . . . . . . . . . . 12  |-  ( k  e.  NN  ->  k  e.  ZZ )
1615anim1i 338 . . . . . . . . . . 11  |-  ( ( k  e.  NN  /\  n  <_  k )  -> 
( k  e.  ZZ  /\  n  <_  k )
)
1716, 11syl5ibr 155 . . . . . . . . . 10  |-  ( n  e.  NN  ->  (
( k  e.  NN  /\  n  <_  k )  ->  k  e.  ( ZZ>= `  n ) ) )
1814, 17impbid 128 . . . . . . . . 9  |-  ( n  e.  NN  ->  (
k  e.  ( ZZ>= `  n )  <->  ( k  e.  NN  /\  n  <_ 
k ) ) )
1918adantl 275 . . . . . . . 8  |-  ( (
ph  /\  n  e.  NN )  ->  ( k  e.  ( ZZ>= `  n
)  <->  ( k  e.  NN  /\  n  <_ 
k ) ) )
2019biimpar 295 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  NN )  /\  (
k  e.  NN  /\  n  <_  k ) )  ->  k  e.  (
ZZ>= `  n ) )
21 caucvgre.cau . . . . . . . . 9  |-  ( ph  ->  A. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( ( F `  n )  <  ( ( F `
 k )  +  ( 1  /  n
) )  /\  ( F `  k )  <  ( ( F `  n )  +  ( 1  /  n ) ) ) )
2221r19.21bi 2520 . . . . . . . 8  |-  ( (
ph  /\  n  e.  NN )  ->  A. k  e.  ( ZZ>= `  n )
( ( F `  n )  <  (
( F `  k
)  +  ( 1  /  n ) )  /\  ( F `  k )  <  (
( F `  n
)  +  ( 1  /  n ) ) ) )
2322r19.21bi 2520 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( F `  n )  <  ( ( F `  k )  +  ( 1  /  n ) )  /\  ( F `
 k )  < 
( ( F `  n )  +  ( 1  /  n ) ) ) )
2420, 23syldan 280 . . . . . 6  |-  ( ( ( ph  /\  n  e.  NN )  /\  (
k  e.  NN  /\  n  <_  k ) )  ->  ( ( F `
 n )  < 
( ( F `  k )  +  ( 1  /  n ) )  /\  ( F `
 k )  < 
( ( F `  n )  +  ( 1  /  n ) ) ) )
2524expr 372 . . . . 5  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  (
n  <_  k  ->  ( ( F `  n
)  <  ( ( F `  k )  +  ( 1  /  n ) )  /\  ( F `  k )  <  ( ( F `
 n )  +  ( 1  /  n
) ) ) ) )
266, 25syld 45 . . . 4  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  (
n  <  k  ->  ( ( F `  n
)  <  ( ( F `  k )  +  ( 1  /  n ) )  /\  ( F `  k )  <  ( ( F `
 n )  +  ( 1  /  n
) ) ) ) )
27 ltxrlt 7842 . . . . 5  |-  ( ( n  e.  RR  /\  k  e.  RR )  ->  ( n  <  k  <->  n 
<RR  k ) )
282, 4, 27syl2anc 408 . . . 4  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  (
n  <  k  <->  n  <RR  k ) )
29 caucvgre.f . . . . . . . . 9  |-  ( ph  ->  F : NN --> RR )
3029ad2antrr 479 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  F : NN --> RR )
3130, 1ffvelrnd 5556 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  ( F `  n )  e.  RR )
3230, 3ffvelrnd 5556 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  ( F `  k )  e.  RR )
331nnrecred 8779 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  (
1  /  n )  e.  RR )
3432, 33readdcld 7807 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  (
( F `  k
)  +  ( 1  /  n ) )  e.  RR )
35 ltxrlt 7842 . . . . . . 7  |-  ( ( ( F `  n
)  e.  RR  /\  ( ( F `  k )  +  ( 1  /  n ) )  e.  RR )  ->  ( ( F `
 n )  < 
( ( F `  k )  +  ( 1  /  n ) )  <->  ( F `  n )  <RR  ( ( F `  k )  +  ( 1  /  n ) ) ) )
3631, 34, 35syl2anc 408 . . . . . 6  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  (
( F `  n
)  <  ( ( F `  k )  +  ( 1  /  n ) )  <->  ( F `  n )  <RR  ( ( F `  k )  +  ( 1  /  n ) ) ) )
37 nnap0 8761 . . . . . . . . . 10  |-  ( n  e.  NN  ->  n #  0 )
381, 37syl 14 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  n #  0 )
39 caucvgrelemrec 10763 . . . . . . . . 9  |-  ( ( n  e.  RR  /\  n #  0 )  ->  ( iota_ r  e.  RR  (
n  x.  r )  =  1 )  =  ( 1  /  n
) )
402, 38, 39syl2anc 408 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  ( iota_ r  e.  RR  (
n  x.  r )  =  1 )  =  ( 1  /  n
) )
4140oveq2d 5790 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  (
( F `  k
)  +  ( iota_ r  e.  RR  ( n  x.  r )  =  1 ) )  =  ( ( F `  k )  +  ( 1  /  n ) ) )
4241breq2d 3941 . . . . . 6  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  (
( F `  n
)  <RR  ( ( F `
 k )  +  ( iota_ r  e.  RR  ( n  x.  r
)  =  1 ) )  <->  ( F `  n )  <RR  ( ( F `  k )  +  ( 1  /  n ) ) ) )
4336, 42bitr4d 190 . . . . 5  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  (
( F `  n
)  <  ( ( F `  k )  +  ( 1  /  n ) )  <->  ( F `  n )  <RR  ( ( F `  k )  +  ( iota_ r  e.  RR  ( n  x.  r )  =  1 ) ) ) )
4431, 33readdcld 7807 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  (
( F `  n
)  +  ( 1  /  n ) )  e.  RR )
45 ltxrlt 7842 . . . . . . 7  |-  ( ( ( F `  k
)  e.  RR  /\  ( ( F `  n )  +  ( 1  /  n ) )  e.  RR )  ->  ( ( F `
 k )  < 
( ( F `  n )  +  ( 1  /  n ) )  <->  ( F `  k )  <RR  ( ( F `  n )  +  ( 1  /  n ) ) ) )
4632, 44, 45syl2anc 408 . . . . . 6  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  (
( F `  k
)  <  ( ( F `  n )  +  ( 1  /  n ) )  <->  ( F `  k )  <RR  ( ( F `  n )  +  ( 1  /  n ) ) ) )
4740oveq2d 5790 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  (
( F `  n
)  +  ( iota_ r  e.  RR  ( n  x.  r )  =  1 ) )  =  ( ( F `  n )  +  ( 1  /  n ) ) )
4847breq2d 3941 . . . . . 6  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  (
( F `  k
)  <RR  ( ( F `
 n )  +  ( iota_ r  e.  RR  ( n  x.  r
)  =  1 ) )  <->  ( F `  k )  <RR  ( ( F `  n )  +  ( 1  /  n ) ) ) )
4946, 48bitr4d 190 . . . . 5  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  (
( F `  k
)  <  ( ( F `  n )  +  ( 1  /  n ) )  <->  ( F `  k )  <RR  ( ( F `  n )  +  ( iota_ r  e.  RR  ( n  x.  r )  =  1 ) ) ) )
5043, 49anbi12d 464 . . . 4  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  (
( ( F `  n )  <  (
( F `  k
)  +  ( 1  /  n ) )  /\  ( F `  k )  <  (
( F `  n
)  +  ( 1  /  n ) ) )  <->  ( ( F `
 n )  <RR  ( ( F `  k
)  +  ( iota_ r  e.  RR  ( n  x.  r )  =  1 ) )  /\  ( F `  k ) 
<RR  ( ( F `  n )  +  (
iota_ r  e.  RR  ( n  x.  r
)  =  1 ) ) ) ) )
5126, 28, 503imtr3d 201 . . 3  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  (
n  <RR  k  ->  (
( F `  n
)  <RR  ( ( F `
 k )  +  ( iota_ r  e.  RR  ( n  x.  r
)  =  1 ) )  /\  ( F `
 k )  <RR  ( ( F `  n
)  +  ( iota_ r  e.  RR  ( n  x.  r )  =  1 ) ) ) ) )
5251ralrimiva 2505 . 2  |-  ( (
ph  /\  n  e.  NN )  ->  A. k  e.  NN  ( n  <RR  k  ->  ( ( F `
 n )  <RR  ( ( F `  k
)  +  ( iota_ r  e.  RR  ( n  x.  r )  =  1 ) )  /\  ( F `  k ) 
<RR  ( ( F `  n )  +  (
iota_ r  e.  RR  ( n  x.  r
)  =  1 ) ) ) ) )
5352ralrimiva 2505 1  |-  ( ph  ->  A. n  e.  NN  A. k  e.  NN  (
n  <RR  k  ->  (
( F `  n
)  <RR  ( ( F `
 k )  +  ( iota_ r  e.  RR  ( n  x.  r
)  =  1 ) )  /\  ( F `
 k )  <RR  ( ( F `  n
)  +  ( iota_ r  e.  RR  ( n  x.  r )  =  1 ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1331    e. wcel 1480   A.wral 2416   class class class wbr 3929   -->wf 5119   ` cfv 5123   iota_crio 5729  (class class class)co 5774   RRcr 7631   0cc0 7632   1c1 7633    + caddc 7635    <RR cltrr 7636    x. cmul 7637    < clt 7812    <_ cle 7813   # cap 8355    / cdiv 8444   NNcn 8732   ZZcz 9066   ZZ>=cuz 9338
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7723  ax-resscn 7724  ax-1cn 7725  ax-1re 7726  ax-icn 7727  ax-addcl 7728  ax-addrcl 7729  ax-mulcl 7730  ax-mulrcl 7731  ax-addcom 7732  ax-mulcom 7733  ax-addass 7734  ax-mulass 7735  ax-distr 7736  ax-i2m1 7737  ax-0lt1 7738  ax-1rid 7739  ax-0id 7740  ax-rnegex 7741  ax-precex 7742  ax-cnre 7743  ax-pre-ltirr 7744  ax-pre-ltwlin 7745  ax-pre-lttrn 7746  ax-pre-apti 7747  ax-pre-ltadd 7748  ax-pre-mulgt0 7749  ax-pre-mulext 7750
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-po 4218  df-iso 4219  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7814  df-mnf 7815  df-xr 7816  df-ltxr 7817  df-le 7818  df-sub 7947  df-neg 7948  df-reap 8349  df-ap 8356  df-div 8445  df-inn 8733  df-z 9067  df-uz 9339
This theorem is referenced by:  caucvgre  10765
  Copyright terms: Public domain W3C validator