ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qsqeqor Unicode version

Theorem qsqeqor 10645
Description: The squares of two rational numbers are equal iff one number equals the other or its negative. (Contributed by Jim Kingdon, 1-Nov-2024.)
Assertion
Ref Expression
qsqeqor  |-  ( ( A  e.  QQ  /\  B  e.  QQ )  ->  ( ( A ^
2 )  =  ( B ^ 2 )  <-> 
( A  =  B  \/  A  =  -u B ) ) )

Proof of Theorem qsqeqor
StepHypRef Expression
1 qre 9639 . . . . . . 7  |-  ( A  e.  QQ  ->  A  e.  RR )
21ad3antrrr 492 . . . . . 6  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  0  <_  A )  /\  0  <_  B )  ->  A  e.  RR )
3 simplr 528 . . . . . 6  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  0  <_  A )  /\  0  <_  B )  ->  0  <_  A )
4 qre 9639 . . . . . . 7  |-  ( B  e.  QQ  ->  B  e.  RR )
54ad3antlr 493 . . . . . 6  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  0  <_  A )  /\  0  <_  B )  ->  B  e.  RR )
6 simpr 110 . . . . . 6  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  0  <_  A )  /\  0  <_  B )  ->  0  <_  B )
7 sq11 10607 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( ( A ^ 2 )  =  ( B ^ 2 )  <->  A  =  B
) )
82, 3, 5, 6, 7syl22anc 1249 . . . . 5  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  0  <_  A )  /\  0  <_  B )  ->  (
( A ^ 2 )  =  ( B ^ 2 )  <->  A  =  B ) )
9 orc 713 . . . . 5  |-  ( A  =  B  ->  ( A  =  B  \/  A  =  -u B ) )
108, 9biimtrdi 163 . . . 4  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  0  <_  A )  /\  0  <_  B )  ->  (
( A ^ 2 )  =  ( B ^ 2 )  -> 
( A  =  B  \/  A  =  -u B ) ) )
11 oveq1 5895 . . . . . . 7  |-  ( A  =  B  ->  ( A ^ 2 )  =  ( B ^ 2 ) )
1211a1i 9 . . . . . 6  |-  ( ( A  e.  QQ  /\  B  e.  QQ )  ->  ( A  =  B  ->  ( A ^
2 )  =  ( B ^ 2 ) ) )
13 oveq1 5895 . . . . . . . . 9  |-  ( A  =  -u B  ->  ( A ^ 2 )  =  ( -u B ^
2 ) )
1413adantl 277 . . . . . . . 8  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  A  =  -u B )  ->  ( A ^ 2 )  =  ( -u B ^
2 ) )
15 qcn 9648 . . . . . . . . . 10  |-  ( B  e.  QQ  ->  B  e.  CC )
16 sqneg 10593 . . . . . . . . . 10  |-  ( B  e.  CC  ->  ( -u B ^ 2 )  =  ( B ^
2 ) )
1715, 16syl 14 . . . . . . . . 9  |-  ( B  e.  QQ  ->  ( -u B ^ 2 )  =  ( B ^
2 ) )
1817ad2antlr 489 . . . . . . . 8  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  A  =  -u B )  ->  ( -u B ^ 2 )  =  ( B ^
2 ) )
1914, 18eqtrd 2220 . . . . . . 7  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  A  =  -u B )  ->  ( A ^ 2 )  =  ( B ^ 2 ) )
2019ex 115 . . . . . 6  |-  ( ( A  e.  QQ  /\  B  e.  QQ )  ->  ( A  =  -u B  ->  ( A ^
2 )  =  ( B ^ 2 ) ) )
2112, 20jaod 718 . . . . 5  |-  ( ( A  e.  QQ  /\  B  e.  QQ )  ->  ( ( A  =  B  \/  A  = 
-u B )  -> 
( A ^ 2 )  =  ( B ^ 2 ) ) )
2221ad2antrr 488 . . . 4  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  0  <_  A )  /\  0  <_  B )  ->  (
( A  =  B  \/  A  =  -u B )  ->  ( A ^ 2 )  =  ( B ^ 2 ) ) )
2310, 22impbid 129 . . 3  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  0  <_  A )  /\  0  <_  B )  ->  (
( A ^ 2 )  =  ( B ^ 2 )  <->  ( A  =  B  \/  A  =  -u B ) ) )
2417eqeq2d 2199 . . . . . 6  |-  ( B  e.  QQ  ->  (
( A ^ 2 )  =  ( -u B ^ 2 )  <->  ( A ^ 2 )  =  ( B ^ 2 ) ) )
2524ad3antlr 493 . . . . 5  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  0  <_  A )  /\  B  <_  0 )  ->  (
( A ^ 2 )  =  ( -u B ^ 2 )  <->  ( A ^ 2 )  =  ( B ^ 2 ) ) )
261ad3antrrr 492 . . . . . . 7  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  0  <_  A )  /\  B  <_  0 )  ->  A  e.  RR )
27 simplr 528 . . . . . . 7  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  0  <_  A )  /\  B  <_  0 )  ->  0  <_  A )
28 qnegcl 9650 . . . . . . . . 9  |-  ( B  e.  QQ  ->  -u B  e.  QQ )
29 qre 9639 . . . . . . . . 9  |-  ( -u B  e.  QQ  ->  -u B  e.  RR )
3028, 29syl 14 . . . . . . . 8  |-  ( B  e.  QQ  ->  -u B  e.  RR )
3130ad3antlr 493 . . . . . . 7  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  0  <_  A )  /\  B  <_  0 )  ->  -u B  e.  RR )
32 simpr 110 . . . . . . . 8  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  0  <_  A )  /\  B  <_  0 )  ->  B  <_  0 )
334le0neg1d 8488 . . . . . . . . 9  |-  ( B  e.  QQ  ->  ( B  <_  0  <->  0  <_  -u B ) )
3433ad3antlr 493 . . . . . . . 8  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  0  <_  A )  /\  B  <_  0 )  ->  ( B  <_  0  <->  0  <_  -u B ) )
3532, 34mpbid 147 . . . . . . 7  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  0  <_  A )  /\  B  <_  0 )  ->  0  <_ 
-u B )
36 sq11 10607 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( -u B  e.  RR  /\  0  <_  -u B ) )  -> 
( ( A ^
2 )  =  (
-u B ^ 2 )  <->  A  =  -u B
) )
3726, 27, 31, 35, 36syl22anc 1249 . . . . . 6  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  0  <_  A )  /\  B  <_  0 )  ->  (
( A ^ 2 )  =  ( -u B ^ 2 )  <->  A  =  -u B ) )
38 olc 712 . . . . . 6  |-  ( A  =  -u B  ->  ( A  =  B  \/  A  =  -u B ) )
3937, 38biimtrdi 163 . . . . 5  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  0  <_  A )  /\  B  <_  0 )  ->  (
( A ^ 2 )  =  ( -u B ^ 2 )  -> 
( A  =  B  \/  A  =  -u B ) ) )
4025, 39sylbird 170 . . . 4  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  0  <_  A )  /\  B  <_  0 )  ->  (
( A ^ 2 )  =  ( B ^ 2 )  -> 
( A  =  B  \/  A  =  -u B ) ) )
4121ad2antrr 488 . . . 4  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  0  <_  A )  /\  B  <_  0 )  ->  (
( A  =  B  \/  A  =  -u B )  ->  ( A ^ 2 )  =  ( B ^ 2 ) ) )
4240, 41impbid 129 . . 3  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  0  <_  A )  /\  B  <_  0 )  ->  (
( A ^ 2 )  =  ( B ^ 2 )  <->  ( A  =  B  \/  A  =  -u B ) ) )
43 0z 9278 . . . . . 6  |-  0  e.  ZZ
44 zq 9640 . . . . . 6  |-  ( 0  e.  ZZ  ->  0  e.  QQ )
4543, 44ax-mp 5 . . . . 5  |-  0  e.  QQ
46 qletric 10258 . . . . 5  |-  ( ( 0  e.  QQ  /\  B  e.  QQ )  ->  ( 0  <_  B  \/  B  <_  0 ) )
4745, 46mpan 424 . . . 4  |-  ( B  e.  QQ  ->  (
0  <_  B  \/  B  <_  0 ) )
4847ad2antlr 489 . . 3  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  0  <_  A
)  ->  ( 0  <_  B  \/  B  <_  0 ) )
4923, 42, 48mpjaodan 799 . 2  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  0  <_  A
)  ->  ( ( A ^ 2 )  =  ( B ^ 2 )  <->  ( A  =  B  \/  A  = 
-u B ) ) )
50 qnegcl 9650 . . . . . . . . . 10  |-  ( A  e.  QQ  ->  -u A  e.  QQ )
51 qre 9639 . . . . . . . . . 10  |-  ( -u A  e.  QQ  ->  -u A  e.  RR )
5250, 51syl 14 . . . . . . . . 9  |-  ( A  e.  QQ  ->  -u A  e.  RR )
5352ad3antrrr 492 . . . . . . . 8  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  A  <_  0 )  /\  0  <_  B )  ->  -u A  e.  RR )
54 simplr 528 . . . . . . . . 9  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  A  <_  0 )  /\  0  <_  B )  ->  A  <_  0 )
551le0neg1d 8488 . . . . . . . . . 10  |-  ( A  e.  QQ  ->  ( A  <_  0  <->  0  <_  -u A ) )
5655ad3antrrr 492 . . . . . . . . 9  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  A  <_  0 )  /\  0  <_  B )  ->  ( A  <_  0  <->  0  <_  -u A ) )
5754, 56mpbid 147 . . . . . . . 8  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  A  <_  0 )  /\  0  <_  B )  ->  0  <_ 
-u A )
584ad3antlr 493 . . . . . . . 8  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  A  <_  0 )  /\  0  <_  B )  ->  B  e.  RR )
59 simpr 110 . . . . . . . 8  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  A  <_  0 )  /\  0  <_  B )  ->  0  <_  B )
60 sq11 10607 . . . . . . . 8  |-  ( ( ( -u A  e.  RR  /\  0  <_  -u A )  /\  ( B  e.  RR  /\  0  <_  B ) )  -> 
( ( -u A ^ 2 )  =  ( B ^ 2 )  <->  -u A  =  B ) )
6153, 57, 58, 59, 60syl22anc 1249 . . . . . . 7  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  A  <_  0 )  /\  0  <_  B )  ->  (
( -u A ^ 2 )  =  ( B ^ 2 )  <->  -u A  =  B ) )
6261biimpd 144 . . . . . 6  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  A  <_  0 )  /\  0  <_  B )  ->  (
( -u A ^ 2 )  =  ( B ^ 2 )  ->  -u A  =  B ) )
63 qcn 9648 . . . . . . . . . 10  |-  ( A  e.  QQ  ->  A  e.  CC )
64 sqneg 10593 . . . . . . . . . 10  |-  ( A  e.  CC  ->  ( -u A ^ 2 )  =  ( A ^
2 ) )
6563, 64syl 14 . . . . . . . . 9  |-  ( A  e.  QQ  ->  ( -u A ^ 2 )  =  ( A ^
2 ) )
6665adantr 276 . . . . . . . 8  |-  ( ( A  e.  QQ  /\  B  e.  QQ )  ->  ( -u A ^
2 )  =  ( A ^ 2 ) )
6766eqeq1d 2196 . . . . . . 7  |-  ( ( A  e.  QQ  /\  B  e.  QQ )  ->  ( ( -u A ^ 2 )  =  ( B ^ 2 )  <->  ( A ^
2 )  =  ( B ^ 2 ) ) )
6867ad2antrr 488 . . . . . 6  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  A  <_  0 )  /\  0  <_  B )  ->  (
( -u A ^ 2 )  =  ( B ^ 2 )  <->  ( A ^ 2 )  =  ( B ^ 2 ) ) )
69 negcon1 8223 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( -u A  =  B  <->  -u B  =  A ) )
7063, 15, 69syl2an 289 . . . . . . . 8  |-  ( ( A  e.  QQ  /\  B  e.  QQ )  ->  ( -u A  =  B  <->  -u B  =  A ) )
71 eqcom 2189 . . . . . . . 8  |-  ( -u B  =  A  <->  A  =  -u B )
7270, 71bitrdi 196 . . . . . . 7  |-  ( ( A  e.  QQ  /\  B  e.  QQ )  ->  ( -u A  =  B  <->  A  =  -u B
) )
7372ad2antrr 488 . . . . . 6  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  A  <_  0 )  /\  0  <_  B )  ->  ( -u A  =  B  <->  A  =  -u B ) )
7462, 68, 733imtr3d 202 . . . . 5  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  A  <_  0 )  /\  0  <_  B )  ->  (
( A ^ 2 )  =  ( B ^ 2 )  ->  A  =  -u B ) )
7574, 38syl6 33 . . . 4  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  A  <_  0 )  /\  0  <_  B )  ->  (
( A ^ 2 )  =  ( B ^ 2 )  -> 
( A  =  B  \/  A  =  -u B ) ) )
7621ad2antrr 488 . . . 4  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  A  <_  0 )  /\  0  <_  B )  ->  (
( A  =  B  \/  A  =  -u B )  ->  ( A ^ 2 )  =  ( B ^ 2 ) ) )
7775, 76impbid 129 . . 3  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  A  <_  0 )  /\  0  <_  B )  ->  (
( A ^ 2 )  =  ( B ^ 2 )  <->  ( A  =  B  \/  A  =  -u B ) ) )
7852ad3antrrr 492 . . . . . . 7  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  A  <_  0 )  /\  B  <_  0 )  ->  -u A  e.  RR )
79 simplr 528 . . . . . . . 8  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  A  <_  0 )  /\  B  <_  0 )  ->  A  <_  0 )
8055ad3antrrr 492 . . . . . . . 8  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  A  <_  0 )  /\  B  <_  0 )  ->  ( A  <_  0  <->  0  <_  -u A ) )
8179, 80mpbid 147 . . . . . . 7  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  A  <_  0 )  /\  B  <_  0 )  ->  0  <_ 
-u A )
8230ad3antlr 493 . . . . . . 7  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  A  <_  0 )  /\  B  <_  0 )  ->  -u B  e.  RR )
83 simpr 110 . . . . . . . 8  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  A  <_  0 )  /\  B  <_  0 )  ->  B  <_  0 )
8433ad3antlr 493 . . . . . . . 8  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  A  <_  0 )  /\  B  <_  0 )  ->  ( B  <_  0  <->  0  <_  -u B ) )
8583, 84mpbid 147 . . . . . . 7  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  A  <_  0 )  /\  B  <_  0 )  ->  0  <_ 
-u B )
86 sq11 10607 . . . . . . 7  |-  ( ( ( -u A  e.  RR  /\  0  <_  -u A )  /\  ( -u B  e.  RR  /\  0  <_  -u B ) )  ->  ( ( -u A ^ 2 )  =  ( -u B ^
2 )  <->  -u A  = 
-u B ) )
8778, 81, 82, 85, 86syl22anc 1249 . . . . . 6  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  A  <_  0 )  /\  B  <_  0 )  ->  (
( -u A ^ 2 )  =  ( -u B ^ 2 )  <->  -u A  = 
-u B ) )
8865, 17eqeqan12d 2203 . . . . . . 7  |-  ( ( A  e.  QQ  /\  B  e.  QQ )  ->  ( ( -u A ^ 2 )  =  ( -u B ^
2 )  <->  ( A ^ 2 )  =  ( B ^ 2 ) ) )
8988ad2antrr 488 . . . . . 6  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  A  <_  0 )  /\  B  <_  0 )  ->  (
( -u A ^ 2 )  =  ( -u B ^ 2 )  <->  ( A ^ 2 )  =  ( B ^ 2 ) ) )
9063ad3antrrr 492 . . . . . . 7  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  A  <_  0 )  /\  B  <_  0 )  ->  A  e.  CC )
9115ad3antlr 493 . . . . . . 7  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  A  <_  0 )  /\  B  <_  0 )  ->  B  e.  CC )
9290, 91neg11ad 8278 . . . . . 6  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  A  <_  0 )  /\  B  <_  0 )  ->  ( -u A  =  -u B  <->  A  =  B ) )
9387, 89, 923bitr3d 218 . . . . 5  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  A  <_  0 )  /\  B  <_  0 )  ->  (
( A ^ 2 )  =  ( B ^ 2 )  <->  A  =  B ) )
9493, 9biimtrdi 163 . . . 4  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  A  <_  0 )  /\  B  <_  0 )  ->  (
( A ^ 2 )  =  ( B ^ 2 )  -> 
( A  =  B  \/  A  =  -u B ) ) )
9521ad2antrr 488 . . . 4  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  A  <_  0 )  /\  B  <_  0 )  ->  (
( A  =  B  \/  A  =  -u B )  ->  ( A ^ 2 )  =  ( B ^ 2 ) ) )
9694, 95impbid 129 . . 3  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  A  <_  0 )  /\  B  <_  0 )  ->  (
( A ^ 2 )  =  ( B ^ 2 )  <->  ( A  =  B  \/  A  =  -u B ) ) )
9747ad2antlr 489 . . 3  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  A  <_  0
)  ->  ( 0  <_  B  \/  B  <_  0 ) )
9877, 96, 97mpjaodan 799 . 2  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  A  <_  0
)  ->  ( ( A ^ 2 )  =  ( B ^ 2 )  <->  ( A  =  B  \/  A  = 
-u B ) ) )
99 qletric 10258 . . . 4  |-  ( ( 0  e.  QQ  /\  A  e.  QQ )  ->  ( 0  <_  A  \/  A  <_  0 ) )
10045, 99mpan 424 . . 3  |-  ( A  e.  QQ  ->  (
0  <_  A  \/  A  <_  0 ) )
101100adantr 276 . 2  |-  ( ( A  e.  QQ  /\  B  e.  QQ )  ->  ( 0  <_  A  \/  A  <_  0 ) )
10249, 98, 101mpjaodan 799 1  |-  ( ( A  e.  QQ  /\  B  e.  QQ )  ->  ( ( A ^
2 )  =  ( B ^ 2 )  <-> 
( A  =  B  \/  A  =  -u B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    = wceq 1363    e. wcel 2158   class class class wbr 4015  (class class class)co 5888   CCcc 7823   RRcr 7824   0cc0 7825    <_ cle 8007   -ucneg 8143   2c2 8984   ZZcz 9267   QQcq 9633   ^cexp 10533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-nul 4141  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-iinf 4599  ax-cnex 7916  ax-resscn 7917  ax-1cn 7918  ax-1re 7919  ax-icn 7920  ax-addcl 7921  ax-addrcl 7922  ax-mulcl 7923  ax-mulrcl 7924  ax-addcom 7925  ax-mulcom 7926  ax-addass 7927  ax-mulass 7928  ax-distr 7929  ax-i2m1 7930  ax-0lt1 7931  ax-1rid 7932  ax-0id 7933  ax-rnegex 7934  ax-precex 7935  ax-cnre 7936  ax-pre-ltirr 7937  ax-pre-ltwlin 7938  ax-pre-lttrn 7939  ax-pre-apti 7940  ax-pre-ltadd 7941  ax-pre-mulgt0 7942  ax-pre-mulext 7943
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rmo 2473  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-if 3547  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-tr 4114  df-id 4305  df-po 4308  df-iso 4309  df-iord 4378  df-on 4380  df-ilim 4381  df-suc 4383  df-iom 4602  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-1st 6155  df-2nd 6156  df-recs 6320  df-frec 6406  df-pnf 8008  df-mnf 8009  df-xr 8010  df-ltxr 8011  df-le 8012  df-sub 8144  df-neg 8145  df-reap 8546  df-ap 8553  df-div 8644  df-inn 8934  df-2 8992  df-n0 9191  df-z 9268  df-uz 9543  df-q 9634  df-rp 9668  df-seqfrec 10460  df-exp 10534
This theorem is referenced by:  4sqlem10  12399
  Copyright terms: Public domain W3C validator