ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qsqeqor Unicode version

Theorem qsqeqor 10832
Description: The squares of two rational numbers are equal iff one number equals the other or its negative. (Contributed by Jim Kingdon, 1-Nov-2024.)
Assertion
Ref Expression
qsqeqor  |-  ( ( A  e.  QQ  /\  B  e.  QQ )  ->  ( ( A ^
2 )  =  ( B ^ 2 )  <-> 
( A  =  B  \/  A  =  -u B ) ) )

Proof of Theorem qsqeqor
StepHypRef Expression
1 qre 9781 . . . . . . 7  |-  ( A  e.  QQ  ->  A  e.  RR )
21ad3antrrr 492 . . . . . 6  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  0  <_  A )  /\  0  <_  B )  ->  A  e.  RR )
3 simplr 528 . . . . . 6  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  0  <_  A )  /\  0  <_  B )  ->  0  <_  A )
4 qre 9781 . . . . . . 7  |-  ( B  e.  QQ  ->  B  e.  RR )
54ad3antlr 493 . . . . . 6  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  0  <_  A )  /\  0  <_  B )  ->  B  e.  RR )
6 simpr 110 . . . . . 6  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  0  <_  A )  /\  0  <_  B )  ->  0  <_  B )
7 sq11 10794 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( ( A ^ 2 )  =  ( B ^ 2 )  <->  A  =  B
) )
82, 3, 5, 6, 7syl22anc 1251 . . . . 5  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  0  <_  A )  /\  0  <_  B )  ->  (
( A ^ 2 )  =  ( B ^ 2 )  <->  A  =  B ) )
9 orc 714 . . . . 5  |-  ( A  =  B  ->  ( A  =  B  \/  A  =  -u B ) )
108, 9biimtrdi 163 . . . 4  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  0  <_  A )  /\  0  <_  B )  ->  (
( A ^ 2 )  =  ( B ^ 2 )  -> 
( A  =  B  \/  A  =  -u B ) ) )
11 oveq1 5974 . . . . . . 7  |-  ( A  =  B  ->  ( A ^ 2 )  =  ( B ^ 2 ) )
1211a1i 9 . . . . . 6  |-  ( ( A  e.  QQ  /\  B  e.  QQ )  ->  ( A  =  B  ->  ( A ^
2 )  =  ( B ^ 2 ) ) )
13 oveq1 5974 . . . . . . . . 9  |-  ( A  =  -u B  ->  ( A ^ 2 )  =  ( -u B ^
2 ) )
1413adantl 277 . . . . . . . 8  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  A  =  -u B )  ->  ( A ^ 2 )  =  ( -u B ^
2 ) )
15 qcn 9790 . . . . . . . . . 10  |-  ( B  e.  QQ  ->  B  e.  CC )
16 sqneg 10780 . . . . . . . . . 10  |-  ( B  e.  CC  ->  ( -u B ^ 2 )  =  ( B ^
2 ) )
1715, 16syl 14 . . . . . . . . 9  |-  ( B  e.  QQ  ->  ( -u B ^ 2 )  =  ( B ^
2 ) )
1817ad2antlr 489 . . . . . . . 8  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  A  =  -u B )  ->  ( -u B ^ 2 )  =  ( B ^
2 ) )
1914, 18eqtrd 2240 . . . . . . 7  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  A  =  -u B )  ->  ( A ^ 2 )  =  ( B ^ 2 ) )
2019ex 115 . . . . . 6  |-  ( ( A  e.  QQ  /\  B  e.  QQ )  ->  ( A  =  -u B  ->  ( A ^
2 )  =  ( B ^ 2 ) ) )
2112, 20jaod 719 . . . . 5  |-  ( ( A  e.  QQ  /\  B  e.  QQ )  ->  ( ( A  =  B  \/  A  = 
-u B )  -> 
( A ^ 2 )  =  ( B ^ 2 ) ) )
2221ad2antrr 488 . . . 4  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  0  <_  A )  /\  0  <_  B )  ->  (
( A  =  B  \/  A  =  -u B )  ->  ( A ^ 2 )  =  ( B ^ 2 ) ) )
2310, 22impbid 129 . . 3  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  0  <_  A )  /\  0  <_  B )  ->  (
( A ^ 2 )  =  ( B ^ 2 )  <->  ( A  =  B  \/  A  =  -u B ) ) )
2417eqeq2d 2219 . . . . . 6  |-  ( B  e.  QQ  ->  (
( A ^ 2 )  =  ( -u B ^ 2 )  <->  ( A ^ 2 )  =  ( B ^ 2 ) ) )
2524ad3antlr 493 . . . . 5  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  0  <_  A )  /\  B  <_  0 )  ->  (
( A ^ 2 )  =  ( -u B ^ 2 )  <->  ( A ^ 2 )  =  ( B ^ 2 ) ) )
261ad3antrrr 492 . . . . . . 7  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  0  <_  A )  /\  B  <_  0 )  ->  A  e.  RR )
27 simplr 528 . . . . . . 7  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  0  <_  A )  /\  B  <_  0 )  ->  0  <_  A )
28 qnegcl 9792 . . . . . . . . 9  |-  ( B  e.  QQ  ->  -u B  e.  QQ )
29 qre 9781 . . . . . . . . 9  |-  ( -u B  e.  QQ  ->  -u B  e.  RR )
3028, 29syl 14 . . . . . . . 8  |-  ( B  e.  QQ  ->  -u B  e.  RR )
3130ad3antlr 493 . . . . . . 7  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  0  <_  A )  /\  B  <_  0 )  ->  -u B  e.  RR )
32 simpr 110 . . . . . . . 8  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  0  <_  A )  /\  B  <_  0 )  ->  B  <_  0 )
334le0neg1d 8625 . . . . . . . . 9  |-  ( B  e.  QQ  ->  ( B  <_  0  <->  0  <_  -u B ) )
3433ad3antlr 493 . . . . . . . 8  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  0  <_  A )  /\  B  <_  0 )  ->  ( B  <_  0  <->  0  <_  -u B ) )
3532, 34mpbid 147 . . . . . . 7  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  0  <_  A )  /\  B  <_  0 )  ->  0  <_ 
-u B )
36 sq11 10794 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( -u B  e.  RR  /\  0  <_  -u B ) )  -> 
( ( A ^
2 )  =  (
-u B ^ 2 )  <->  A  =  -u B
) )
3726, 27, 31, 35, 36syl22anc 1251 . . . . . 6  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  0  <_  A )  /\  B  <_  0 )  ->  (
( A ^ 2 )  =  ( -u B ^ 2 )  <->  A  =  -u B ) )
38 olc 713 . . . . . 6  |-  ( A  =  -u B  ->  ( A  =  B  \/  A  =  -u B ) )
3937, 38biimtrdi 163 . . . . 5  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  0  <_  A )  /\  B  <_  0 )  ->  (
( A ^ 2 )  =  ( -u B ^ 2 )  -> 
( A  =  B  \/  A  =  -u B ) ) )
4025, 39sylbird 170 . . . 4  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  0  <_  A )  /\  B  <_  0 )  ->  (
( A ^ 2 )  =  ( B ^ 2 )  -> 
( A  =  B  \/  A  =  -u B ) ) )
4121ad2antrr 488 . . . 4  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  0  <_  A )  /\  B  <_  0 )  ->  (
( A  =  B  \/  A  =  -u B )  ->  ( A ^ 2 )  =  ( B ^ 2 ) ) )
4240, 41impbid 129 . . 3  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  0  <_  A )  /\  B  <_  0 )  ->  (
( A ^ 2 )  =  ( B ^ 2 )  <->  ( A  =  B  \/  A  =  -u B ) ) )
43 0z 9418 . . . . . 6  |-  0  e.  ZZ
44 zq 9782 . . . . . 6  |-  ( 0  e.  ZZ  ->  0  e.  QQ )
4543, 44ax-mp 5 . . . . 5  |-  0  e.  QQ
46 qletric 10421 . . . . 5  |-  ( ( 0  e.  QQ  /\  B  e.  QQ )  ->  ( 0  <_  B  \/  B  <_  0 ) )
4745, 46mpan 424 . . . 4  |-  ( B  e.  QQ  ->  (
0  <_  B  \/  B  <_  0 ) )
4847ad2antlr 489 . . 3  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  0  <_  A
)  ->  ( 0  <_  B  \/  B  <_  0 ) )
4923, 42, 48mpjaodan 800 . 2  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  0  <_  A
)  ->  ( ( A ^ 2 )  =  ( B ^ 2 )  <->  ( A  =  B  \/  A  = 
-u B ) ) )
50 qnegcl 9792 . . . . . . . . . 10  |-  ( A  e.  QQ  ->  -u A  e.  QQ )
51 qre 9781 . . . . . . . . . 10  |-  ( -u A  e.  QQ  ->  -u A  e.  RR )
5250, 51syl 14 . . . . . . . . 9  |-  ( A  e.  QQ  ->  -u A  e.  RR )
5352ad3antrrr 492 . . . . . . . 8  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  A  <_  0 )  /\  0  <_  B )  ->  -u A  e.  RR )
54 simplr 528 . . . . . . . . 9  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  A  <_  0 )  /\  0  <_  B )  ->  A  <_  0 )
551le0neg1d 8625 . . . . . . . . . 10  |-  ( A  e.  QQ  ->  ( A  <_  0  <->  0  <_  -u A ) )
5655ad3antrrr 492 . . . . . . . . 9  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  A  <_  0 )  /\  0  <_  B )  ->  ( A  <_  0  <->  0  <_  -u A ) )
5754, 56mpbid 147 . . . . . . . 8  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  A  <_  0 )  /\  0  <_  B )  ->  0  <_ 
-u A )
584ad3antlr 493 . . . . . . . 8  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  A  <_  0 )  /\  0  <_  B )  ->  B  e.  RR )
59 simpr 110 . . . . . . . 8  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  A  <_  0 )  /\  0  <_  B )  ->  0  <_  B )
60 sq11 10794 . . . . . . . 8  |-  ( ( ( -u A  e.  RR  /\  0  <_  -u A )  /\  ( B  e.  RR  /\  0  <_  B ) )  -> 
( ( -u A ^ 2 )  =  ( B ^ 2 )  <->  -u A  =  B ) )
6153, 57, 58, 59, 60syl22anc 1251 . . . . . . 7  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  A  <_  0 )  /\  0  <_  B )  ->  (
( -u A ^ 2 )  =  ( B ^ 2 )  <->  -u A  =  B ) )
6261biimpd 144 . . . . . 6  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  A  <_  0 )  /\  0  <_  B )  ->  (
( -u A ^ 2 )  =  ( B ^ 2 )  ->  -u A  =  B ) )
63 qcn 9790 . . . . . . . . . 10  |-  ( A  e.  QQ  ->  A  e.  CC )
64 sqneg 10780 . . . . . . . . . 10  |-  ( A  e.  CC  ->  ( -u A ^ 2 )  =  ( A ^
2 ) )
6563, 64syl 14 . . . . . . . . 9  |-  ( A  e.  QQ  ->  ( -u A ^ 2 )  =  ( A ^
2 ) )
6665adantr 276 . . . . . . . 8  |-  ( ( A  e.  QQ  /\  B  e.  QQ )  ->  ( -u A ^
2 )  =  ( A ^ 2 ) )
6766eqeq1d 2216 . . . . . . 7  |-  ( ( A  e.  QQ  /\  B  e.  QQ )  ->  ( ( -u A ^ 2 )  =  ( B ^ 2 )  <->  ( A ^
2 )  =  ( B ^ 2 ) ) )
6867ad2antrr 488 . . . . . 6  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  A  <_  0 )  /\  0  <_  B )  ->  (
( -u A ^ 2 )  =  ( B ^ 2 )  <->  ( A ^ 2 )  =  ( B ^ 2 ) ) )
69 negcon1 8359 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( -u A  =  B  <->  -u B  =  A ) )
7063, 15, 69syl2an 289 . . . . . . . 8  |-  ( ( A  e.  QQ  /\  B  e.  QQ )  ->  ( -u A  =  B  <->  -u B  =  A ) )
71 eqcom 2209 . . . . . . . 8  |-  ( -u B  =  A  <->  A  =  -u B )
7270, 71bitrdi 196 . . . . . . 7  |-  ( ( A  e.  QQ  /\  B  e.  QQ )  ->  ( -u A  =  B  <->  A  =  -u B
) )
7372ad2antrr 488 . . . . . 6  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  A  <_  0 )  /\  0  <_  B )  ->  ( -u A  =  B  <->  A  =  -u B ) )
7462, 68, 733imtr3d 202 . . . . 5  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  A  <_  0 )  /\  0  <_  B )  ->  (
( A ^ 2 )  =  ( B ^ 2 )  ->  A  =  -u B ) )
7574, 38syl6 33 . . . 4  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  A  <_  0 )  /\  0  <_  B )  ->  (
( A ^ 2 )  =  ( B ^ 2 )  -> 
( A  =  B  \/  A  =  -u B ) ) )
7621ad2antrr 488 . . . 4  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  A  <_  0 )  /\  0  <_  B )  ->  (
( A  =  B  \/  A  =  -u B )  ->  ( A ^ 2 )  =  ( B ^ 2 ) ) )
7775, 76impbid 129 . . 3  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  A  <_  0 )  /\  0  <_  B )  ->  (
( A ^ 2 )  =  ( B ^ 2 )  <->  ( A  =  B  \/  A  =  -u B ) ) )
7852ad3antrrr 492 . . . . . . 7  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  A  <_  0 )  /\  B  <_  0 )  ->  -u A  e.  RR )
79 simplr 528 . . . . . . . 8  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  A  <_  0 )  /\  B  <_  0 )  ->  A  <_  0 )
8055ad3antrrr 492 . . . . . . . 8  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  A  <_  0 )  /\  B  <_  0 )  ->  ( A  <_  0  <->  0  <_  -u A ) )
8179, 80mpbid 147 . . . . . . 7  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  A  <_  0 )  /\  B  <_  0 )  ->  0  <_ 
-u A )
8230ad3antlr 493 . . . . . . 7  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  A  <_  0 )  /\  B  <_  0 )  ->  -u B  e.  RR )
83 simpr 110 . . . . . . . 8  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  A  <_  0 )  /\  B  <_  0 )  ->  B  <_  0 )
8433ad3antlr 493 . . . . . . . 8  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  A  <_  0 )  /\  B  <_  0 )  ->  ( B  <_  0  <->  0  <_  -u B ) )
8583, 84mpbid 147 . . . . . . 7  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  A  <_  0 )  /\  B  <_  0 )  ->  0  <_ 
-u B )
86 sq11 10794 . . . . . . 7  |-  ( ( ( -u A  e.  RR  /\  0  <_  -u A )  /\  ( -u B  e.  RR  /\  0  <_  -u B ) )  ->  ( ( -u A ^ 2 )  =  ( -u B ^
2 )  <->  -u A  = 
-u B ) )
8778, 81, 82, 85, 86syl22anc 1251 . . . . . 6  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  A  <_  0 )  /\  B  <_  0 )  ->  (
( -u A ^ 2 )  =  ( -u B ^ 2 )  <->  -u A  = 
-u B ) )
8865, 17eqeqan12d 2223 . . . . . . 7  |-  ( ( A  e.  QQ  /\  B  e.  QQ )  ->  ( ( -u A ^ 2 )  =  ( -u B ^
2 )  <->  ( A ^ 2 )  =  ( B ^ 2 ) ) )
8988ad2antrr 488 . . . . . 6  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  A  <_  0 )  /\  B  <_  0 )  ->  (
( -u A ^ 2 )  =  ( -u B ^ 2 )  <->  ( A ^ 2 )  =  ( B ^ 2 ) ) )
9063ad3antrrr 492 . . . . . . 7  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  A  <_  0 )  /\  B  <_  0 )  ->  A  e.  CC )
9115ad3antlr 493 . . . . . . 7  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  A  <_  0 )  /\  B  <_  0 )  ->  B  e.  CC )
9290, 91neg11ad 8414 . . . . . 6  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  A  <_  0 )  /\  B  <_  0 )  ->  ( -u A  =  -u B  <->  A  =  B ) )
9387, 89, 923bitr3d 218 . . . . 5  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  A  <_  0 )  /\  B  <_  0 )  ->  (
( A ^ 2 )  =  ( B ^ 2 )  <->  A  =  B ) )
9493, 9biimtrdi 163 . . . 4  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  A  <_  0 )  /\  B  <_  0 )  ->  (
( A ^ 2 )  =  ( B ^ 2 )  -> 
( A  =  B  \/  A  =  -u B ) ) )
9521ad2antrr 488 . . . 4  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  A  <_  0 )  /\  B  <_  0 )  ->  (
( A  =  B  \/  A  =  -u B )  ->  ( A ^ 2 )  =  ( B ^ 2 ) ) )
9694, 95impbid 129 . . 3  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  A  <_  0 )  /\  B  <_  0 )  ->  (
( A ^ 2 )  =  ( B ^ 2 )  <->  ( A  =  B  \/  A  =  -u B ) ) )
9747ad2antlr 489 . . 3  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  A  <_  0
)  ->  ( 0  <_  B  \/  B  <_  0 ) )
9877, 96, 97mpjaodan 800 . 2  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  A  <_  0
)  ->  ( ( A ^ 2 )  =  ( B ^ 2 )  <->  ( A  =  B  \/  A  = 
-u B ) ) )
99 qletric 10421 . . . 4  |-  ( ( 0  e.  QQ  /\  A  e.  QQ )  ->  ( 0  <_  A  \/  A  <_  0 ) )
10045, 99mpan 424 . . 3  |-  ( A  e.  QQ  ->  (
0  <_  A  \/  A  <_  0 ) )
101100adantr 276 . 2  |-  ( ( A  e.  QQ  /\  B  e.  QQ )  ->  ( 0  <_  A  \/  A  <_  0 ) )
10249, 98, 101mpjaodan 800 1  |-  ( ( A  e.  QQ  /\  B  e.  QQ )  ->  ( ( A ^
2 )  =  ( B ^ 2 )  <-> 
( A  =  B  \/  A  =  -u B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710    = wceq 1373    e. wcel 2178   class class class wbr 4059  (class class class)co 5967   CCcc 7958   RRcr 7959   0cc0 7960    <_ cle 8143   -ucneg 8279   2c2 9122   ZZcz 9407   QQcq 9775   ^cexp 10720
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-frec 6500  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-2 9130  df-n0 9331  df-z 9408  df-uz 9684  df-q 9776  df-rp 9811  df-seqfrec 10630  df-exp 10721
This theorem is referenced by:  4sqlem10  12825
  Copyright terms: Public domain W3C validator