Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > f1imass | Unicode version |
Description: Taking images under a one-to-one function preserves subsets. (Contributed by Stefan O'Rear, 30-Oct-2014.) |
Ref | Expression |
---|---|
f1imass |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplrl 525 | . . . . . . 7 | |
2 | 1 | sseld 3141 | . . . . . 6 |
3 | simplr 520 | . . . . . . . . 9 | |
4 | 3 | sseld 3141 | . . . . . . . 8 |
5 | simplll 523 | . . . . . . . . 9 | |
6 | simpr 109 | . . . . . . . . 9 | |
7 | simp1rl 1052 | . . . . . . . . . 10 | |
8 | 7 | 3expa 1193 | . . . . . . . . 9 |
9 | f1elima 5741 | . . . . . . . . 9 | |
10 | 5, 6, 8, 9 | syl3anc 1228 | . . . . . . . 8 |
11 | simp1rr 1053 | . . . . . . . . . 10 | |
12 | 11 | 3expa 1193 | . . . . . . . . 9 |
13 | f1elima 5741 | . . . . . . . . 9 | |
14 | 5, 6, 12, 13 | syl3anc 1228 | . . . . . . . 8 |
15 | 4, 10, 14 | 3imtr3d 201 | . . . . . . 7 |
16 | 15 | ex 114 | . . . . . 6 |
17 | 2, 16 | syld 45 | . . . . 5 |
18 | 17 | pm2.43d 50 | . . . 4 |
19 | 18 | ssrdv 3148 | . . 3 |
20 | 19 | ex 114 | . 2 |
21 | imass2 4980 | . 2 | |
22 | 20, 21 | impbid1 141 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wcel 2136 wss 3116 cima 4607 wf1 5185 cfv 5188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fv 5196 |
This theorem is referenced by: f1imaeq 5743 |
Copyright terms: Public domain | W3C validator |