Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > f1imass | Unicode version |
Description: Taking images under a one-to-one function preserves subsets. (Contributed by Stefan O'Rear, 30-Oct-2014.) |
Ref | Expression |
---|---|
f1imass |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplrl 530 | . . . . . . 7 | |
2 | 1 | sseld 3146 | . . . . . 6 |
3 | simplr 525 | . . . . . . . . 9 | |
4 | 3 | sseld 3146 | . . . . . . . 8 |
5 | simplll 528 | . . . . . . . . 9 | |
6 | simpr 109 | . . . . . . . . 9 | |
7 | simp1rl 1057 | . . . . . . . . . 10 | |
8 | 7 | 3expa 1198 | . . . . . . . . 9 |
9 | f1elima 5750 | . . . . . . . . 9 | |
10 | 5, 6, 8, 9 | syl3anc 1233 | . . . . . . . 8 |
11 | simp1rr 1058 | . . . . . . . . . 10 | |
12 | 11 | 3expa 1198 | . . . . . . . . 9 |
13 | f1elima 5750 | . . . . . . . . 9 | |
14 | 5, 6, 12, 13 | syl3anc 1233 | . . . . . . . 8 |
15 | 4, 10, 14 | 3imtr3d 201 | . . . . . . 7 |
16 | 15 | ex 114 | . . . . . 6 |
17 | 2, 16 | syld 45 | . . . . 5 |
18 | 17 | pm2.43d 50 | . . . 4 |
19 | 18 | ssrdv 3153 | . . 3 |
20 | 19 | ex 114 | . 2 |
21 | imass2 4985 | . 2 | |
22 | 20, 21 | impbid1 141 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wcel 2141 wss 3121 cima 4612 wf1 5193 cfv 5196 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 ax-pr 4192 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-br 3988 df-opab 4049 df-id 4276 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-f1 5201 df-fv 5204 |
This theorem is referenced by: f1imaeq 5752 |
Copyright terms: Public domain | W3C validator |