ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mullocpr Unicode version

Theorem mullocpr 7321
Description: Locatedness of multiplication on positive reals. Lemma 12.9 in [BauerTaylor], p. 56 (but where both  A and  B are positive, not just  A). (Contributed by Jim Kingdon, 8-Dec-2019.)
Assertion
Ref Expression
mullocpr  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  A. q  e.  Q.  A. r  e.  Q.  (
q  <Q  r  ->  (
q  e.  ( 1st `  ( A  .P.  B
) )  \/  r  e.  ( 2nd `  ( A  .P.  B ) ) ) ) )
Distinct variable groups:    A, q, r    B, q, r

Proof of Theorem mullocpr
Dummy variables  d  e  t  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prop 7225 . . . . . . . 8  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
2 prmuloc 7316 . . . . . . . 8  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  q  <Q  r )  ->  E. d  e.  Q.  E. u  e.  Q.  (
d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A
)  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) ) )
31, 2sylan 279 . . . . . . 7  |-  ( ( A  e.  P.  /\  q  <Q  r )  ->  E. d  e.  Q.  E. u  e.  Q.  (
d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A
)  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) ) )
4 r2ex 2427 . . . . . . 7  |-  ( E. d  e.  Q.  E. u  e.  Q.  (
d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A
)  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) )  <->  E. d E. u
( ( d  e. 
Q.  /\  u  e.  Q. )  /\  (
d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A
)  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) ) ) )
53, 4sylib 121 . . . . . 6  |-  ( ( A  e.  P.  /\  q  <Q  r )  ->  E. d E. u ( ( d  e.  Q.  /\  u  e.  Q. )  /\  ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A )  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) ) ) )
65adantlr 466 . . . . 5  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  q  <Q  r )  ->  E. d E. u
( ( d  e. 
Q.  /\  u  e.  Q. )  /\  (
d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A
)  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) ) ) )
76adantlr 466 . . . 4  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  (
q  e.  Q.  /\  r  e.  Q. )
)  /\  q  <Q  r )  ->  E. d E. u ( ( d  e.  Q.  /\  u  e.  Q. )  /\  (
d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A
)  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) ) ) )
8 simprr3 1012 . . . . . . . 8  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  (
q  e.  Q.  /\  r  e.  Q. )
)  /\  q  <Q  r )  /\  ( ( d  e.  Q.  /\  u  e.  Q. )  /\  ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A )  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) ) ) )  -> 
( u  .Q  q
)  <Q  ( d  .Q  r ) )
9 simprl 503 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  (
q  e.  Q.  /\  r  e.  Q. )
)  /\  q  <Q  r )  /\  ( ( d  e.  Q.  /\  u  e.  Q. )  /\  ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A )  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) ) ) )  -> 
( d  e.  Q.  /\  u  e.  Q. )
)
10 mulclnq 7126 . . . . . . . . 9  |-  ( ( d  e.  Q.  /\  u  e.  Q. )  ->  ( d  .Q  u
)  e.  Q. )
119, 10syl 14 . . . . . . . 8  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  (
q  e.  Q.  /\  r  e.  Q. )
)  /\  q  <Q  r )  /\  ( ( d  e.  Q.  /\  u  e.  Q. )  /\  ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A )  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) ) ) )  -> 
( d  .Q  u
)  e.  Q. )
12 appdivnq 7313 . . . . . . . 8  |-  ( ( ( u  .Q  q
)  <Q  ( d  .Q  r )  /\  (
d  .Q  u )  e.  Q. )  ->  E. e  e.  Q.  ( ( u  .Q  q )  <Q  (
e  .Q  ( d  .Q  u ) )  /\  ( e  .Q  ( d  .Q  u
) )  <Q  (
d  .Q  r ) ) )
138, 11, 12syl2anc 406 . . . . . . 7  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  (
q  e.  Q.  /\  r  e.  Q. )
)  /\  q  <Q  r )  /\  ( ( d  e.  Q.  /\  u  e.  Q. )  /\  ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A )  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) ) ) )  ->  E. e  e.  Q.  ( ( u  .Q  q )  <Q  (
e  .Q  ( d  .Q  u ) )  /\  ( e  .Q  ( d  .Q  u
) )  <Q  (
d  .Q  r ) ) )
14 simprrr 512 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )
)  /\  q  <Q  r )  /\  ( ( d  e.  Q.  /\  u  e.  Q. )  /\  ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A )  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) ) ) )  /\  ( e  e.  Q.  /\  ( ( u  .Q  q )  <Q  (
e  .Q  ( d  .Q  u ) )  /\  ( e  .Q  ( d  .Q  u
) )  <Q  (
d  .Q  r ) ) ) )  -> 
( e  .Q  (
d  .Q  u ) )  <Q  ( d  .Q  r ) )
1511adantr 272 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )
)  /\  q  <Q  r )  /\  ( ( d  e.  Q.  /\  u  e.  Q. )  /\  ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A )  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) ) ) )  /\  ( e  e.  Q.  /\  ( ( u  .Q  q )  <Q  (
e  .Q  ( d  .Q  u ) )  /\  ( e  .Q  ( d  .Q  u
) )  <Q  (
d  .Q  r ) ) ) )  -> 
( d  .Q  u
)  e.  Q. )
16 appdivnq 7313 . . . . . . . . 9  |-  ( ( ( e  .Q  (
d  .Q  u ) )  <Q  ( d  .Q  r )  /\  (
d  .Q  u )  e.  Q. )  ->  E. t  e.  Q.  ( ( e  .Q  ( d  .Q  u
) )  <Q  (
t  .Q  ( d  .Q  u ) )  /\  ( t  .Q  ( d  .Q  u
) )  <Q  (
d  .Q  r ) ) )
1714, 15, 16syl2anc 406 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )
)  /\  q  <Q  r )  /\  ( ( d  e.  Q.  /\  u  e.  Q. )  /\  ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A )  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) ) ) )  /\  ( e  e.  Q.  /\  ( ( u  .Q  q )  <Q  (
e  .Q  ( d  .Q  u ) )  /\  ( e  .Q  ( d  .Q  u
) )  <Q  (
d  .Q  r ) ) ) )  ->  E. t  e.  Q.  ( ( e  .Q  ( d  .Q  u
) )  <Q  (
t  .Q  ( d  .Q  u ) )  /\  ( t  .Q  ( d  .Q  u
) )  <Q  (
d  .Q  r ) ) )
18 simplll 505 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  (
q  e.  Q.  /\  r  e.  Q. )
)  /\  q  <Q  r )  /\  ( ( d  e.  Q.  /\  u  e.  Q. )  /\  ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A )  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) ) ) )  -> 
( A  e.  P.  /\  B  e.  P. )
)
1918ad2antrr 477 . . . . . . . . 9  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )
)  /\  q  <Q  r )  /\  ( ( d  e.  Q.  /\  u  e.  Q. )  /\  ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A )  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) ) ) )  /\  ( e  e.  Q.  /\  ( ( u  .Q  q )  <Q  (
e  .Q  ( d  .Q  u ) )  /\  ( e  .Q  ( d  .Q  u
) )  <Q  (
d  .Q  r ) ) ) )  /\  ( t  e.  Q.  /\  ( ( e  .Q  ( d  .Q  u
) )  <Q  (
t  .Q  ( d  .Q  u ) )  /\  ( t  .Q  ( d  .Q  u
) )  <Q  (
d  .Q  r ) ) ) )  -> 
( A  e.  P.  /\  B  e.  P. )
)
20 simprl 503 . . . . . . . . . 10  |-  ( ( e  e.  Q.  /\  ( ( u  .Q  q )  <Q  (
e  .Q  ( d  .Q  u ) )  /\  ( e  .Q  ( d  .Q  u
) )  <Q  (
d  .Q  r ) ) )  ->  (
u  .Q  q ) 
<Q  ( e  .Q  (
d  .Q  u ) ) )
2120ad2antlr 478 . . . . . . . . 9  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )
)  /\  q  <Q  r )  /\  ( ( d  e.  Q.  /\  u  e.  Q. )  /\  ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A )  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) ) ) )  /\  ( e  e.  Q.  /\  ( ( u  .Q  q )  <Q  (
e  .Q  ( d  .Q  u ) )  /\  ( e  .Q  ( d  .Q  u
) )  <Q  (
d  .Q  r ) ) ) )  /\  ( t  e.  Q.  /\  ( ( e  .Q  ( d  .Q  u
) )  <Q  (
t  .Q  ( d  .Q  u ) )  /\  ( t  .Q  ( d  .Q  u
) )  <Q  (
d  .Q  r ) ) ) )  -> 
( u  .Q  q
)  <Q  ( e  .Q  ( d  .Q  u
) ) )
22 simprrl 511 . . . . . . . . 9  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )
)  /\  q  <Q  r )  /\  ( ( d  e.  Q.  /\  u  e.  Q. )  /\  ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A )  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) ) ) )  /\  ( e  e.  Q.  /\  ( ( u  .Q  q )  <Q  (
e  .Q  ( d  .Q  u ) )  /\  ( e  .Q  ( d  .Q  u
) )  <Q  (
d  .Q  r ) ) ) )  /\  ( t  e.  Q.  /\  ( ( e  .Q  ( d  .Q  u
) )  <Q  (
t  .Q  ( d  .Q  u ) )  /\  ( t  .Q  ( d  .Q  u
) )  <Q  (
d  .Q  r ) ) ) )  -> 
( e  .Q  (
d  .Q  u ) )  <Q  ( t  .Q  ( d  .Q  u
) ) )
23 simprrr 512 . . . . . . . . 9  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )
)  /\  q  <Q  r )  /\  ( ( d  e.  Q.  /\  u  e.  Q. )  /\  ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A )  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) ) ) )  /\  ( e  e.  Q.  /\  ( ( u  .Q  q )  <Q  (
e  .Q  ( d  .Q  u ) )  /\  ( e  .Q  ( d  .Q  u
) )  <Q  (
d  .Q  r ) ) ) )  /\  ( t  e.  Q.  /\  ( ( e  .Q  ( d  .Q  u
) )  <Q  (
t  .Q  ( d  .Q  u ) )  /\  ( t  .Q  ( d  .Q  u
) )  <Q  (
d  .Q  r ) ) ) )  -> 
( t  .Q  (
d  .Q  u ) )  <Q  ( d  .Q  r ) )
24 simpllr 506 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  (
q  e.  Q.  /\  r  e.  Q. )
)  /\  q  <Q  r )  /\  ( ( d  e.  Q.  /\  u  e.  Q. )  /\  ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A )  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) ) ) )  -> 
( q  e.  Q.  /\  r  e.  Q. )
)
2524ad2antrr 477 . . . . . . . . 9  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )
)  /\  q  <Q  r )  /\  ( ( d  e.  Q.  /\  u  e.  Q. )  /\  ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A )  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) ) ) )  /\  ( e  e.  Q.  /\  ( ( u  .Q  q )  <Q  (
e  .Q  ( d  .Q  u ) )  /\  ( e  .Q  ( d  .Q  u
) )  <Q  (
d  .Q  r ) ) ) )  /\  ( t  e.  Q.  /\  ( ( e  .Q  ( d  .Q  u
) )  <Q  (
t  .Q  ( d  .Q  u ) )  /\  ( t  .Q  ( d  .Q  u
) )  <Q  (
d  .Q  r ) ) ) )  -> 
( q  e.  Q.  /\  r  e.  Q. )
)
269ad2antrr 477 . . . . . . . . 9  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )
)  /\  q  <Q  r )  /\  ( ( d  e.  Q.  /\  u  e.  Q. )  /\  ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A )  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) ) ) )  /\  ( e  e.  Q.  /\  ( ( u  .Q  q )  <Q  (
e  .Q  ( d  .Q  u ) )  /\  ( e  .Q  ( d  .Q  u
) )  <Q  (
d  .Q  r ) ) ) )  /\  ( t  e.  Q.  /\  ( ( e  .Q  ( d  .Q  u
) )  <Q  (
t  .Q  ( d  .Q  u ) )  /\  ( t  .Q  ( d  .Q  u
) )  <Q  (
d  .Q  r ) ) ) )  -> 
( d  e.  Q.  /\  u  e.  Q. )
)
27 3simpa 959 . . . . . . . . . . 11  |-  ( ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A
)  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) )  ->  ( d  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )
2827ad2antll 480 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  (
q  e.  Q.  /\  r  e.  Q. )
)  /\  q  <Q  r )  /\  ( ( d  e.  Q.  /\  u  e.  Q. )  /\  ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A )  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) ) ) )  -> 
( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A ) ) )
2928ad2antrr 477 . . . . . . . . 9  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )
)  /\  q  <Q  r )  /\  ( ( d  e.  Q.  /\  u  e.  Q. )  /\  ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A )  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) ) ) )  /\  ( e  e.  Q.  /\  ( ( u  .Q  q )  <Q  (
e  .Q  ( d  .Q  u ) )  /\  ( e  .Q  ( d  .Q  u
) )  <Q  (
d  .Q  r ) ) ) )  /\  ( t  e.  Q.  /\  ( ( e  .Q  ( d  .Q  u
) )  <Q  (
t  .Q  ( d  .Q  u ) )  /\  ( t  .Q  ( d  .Q  u
) )  <Q  (
d  .Q  r ) ) ) )  -> 
( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A ) ) )
30 simplrl 507 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )
)  /\  q  <Q  r )  /\  ( ( d  e.  Q.  /\  u  e.  Q. )  /\  ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A )  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) ) ) )  /\  ( e  e.  Q.  /\  ( ( u  .Q  q )  <Q  (
e  .Q  ( d  .Q  u ) )  /\  ( e  .Q  ( d  .Q  u
) )  <Q  (
d  .Q  r ) ) ) )  /\  ( t  e.  Q.  /\  ( ( e  .Q  ( d  .Q  u
) )  <Q  (
t  .Q  ( d  .Q  u ) )  /\  ( t  .Q  ( d  .Q  u
) )  <Q  (
d  .Q  r ) ) ) )  -> 
e  e.  Q. )
31 simprl 503 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )
)  /\  q  <Q  r )  /\  ( ( d  e.  Q.  /\  u  e.  Q. )  /\  ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A )  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) ) ) )  /\  ( e  e.  Q.  /\  ( ( u  .Q  q )  <Q  (
e  .Q  ( d  .Q  u ) )  /\  ( e  .Q  ( d  .Q  u
) )  <Q  (
d  .Q  r ) ) ) )  /\  ( t  e.  Q.  /\  ( ( e  .Q  ( d  .Q  u
) )  <Q  (
t  .Q  ( d  .Q  u ) )  /\  ( t  .Q  ( d  .Q  u
) )  <Q  (
d  .Q  r ) ) ) )  -> 
t  e.  Q. )
3230, 31jca 302 . . . . . . . . 9  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )
)  /\  q  <Q  r )  /\  ( ( d  e.  Q.  /\  u  e.  Q. )  /\  ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A )  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) ) ) )  /\  ( e  e.  Q.  /\  ( ( u  .Q  q )  <Q  (
e  .Q  ( d  .Q  u ) )  /\  ( e  .Q  ( d  .Q  u
) )  <Q  (
d  .Q  r ) ) ) )  /\  ( t  e.  Q.  /\  ( ( e  .Q  ( d  .Q  u
) )  <Q  (
t  .Q  ( d  .Q  u ) )  /\  ( t  .Q  ( d  .Q  u
) )  <Q  (
d  .Q  r ) ) ) )  -> 
( e  e.  Q.  /\  t  e.  Q. )
)
3319, 21, 22, 23, 25, 26, 29, 32mullocprlem 7320 . . . . . . . 8  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )
)  /\  q  <Q  r )  /\  ( ( d  e.  Q.  /\  u  e.  Q. )  /\  ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A )  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) ) ) )  /\  ( e  e.  Q.  /\  ( ( u  .Q  q )  <Q  (
e  .Q  ( d  .Q  u ) )  /\  ( e  .Q  ( d  .Q  u
) )  <Q  (
d  .Q  r ) ) ) )  /\  ( t  e.  Q.  /\  ( ( e  .Q  ( d  .Q  u
) )  <Q  (
t  .Q  ( d  .Q  u ) )  /\  ( t  .Q  ( d  .Q  u
) )  <Q  (
d  .Q  r ) ) ) )  -> 
( q  e.  ( 1st `  ( A  .P.  B ) )  \/  r  e.  ( 2nd `  ( A  .P.  B ) ) ) )
3417, 33rexlimddv 2526 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )
)  /\  q  <Q  r )  /\  ( ( d  e.  Q.  /\  u  e.  Q. )  /\  ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A )  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) ) ) )  /\  ( e  e.  Q.  /\  ( ( u  .Q  q )  <Q  (
e  .Q  ( d  .Q  u ) )  /\  ( e  .Q  ( d  .Q  u
) )  <Q  (
d  .Q  r ) ) ) )  -> 
( q  e.  ( 1st `  ( A  .P.  B ) )  \/  r  e.  ( 2nd `  ( A  .P.  B ) ) ) )
3513, 34rexlimddv 2526 . . . . . 6  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  (
q  e.  Q.  /\  r  e.  Q. )
)  /\  q  <Q  r )  /\  ( ( d  e.  Q.  /\  u  e.  Q. )  /\  ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A )  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) ) ) )  -> 
( q  e.  ( 1st `  ( A  .P.  B ) )  \/  r  e.  ( 2nd `  ( A  .P.  B ) ) ) )
3635ex 114 . . . . 5  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  (
q  e.  Q.  /\  r  e.  Q. )
)  /\  q  <Q  r )  ->  ( (
( d  e.  Q.  /\  u  e.  Q. )  /\  ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A )  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) ) )  ->  (
q  e.  ( 1st `  ( A  .P.  B
) )  \/  r  e.  ( 2nd `  ( A  .P.  B ) ) ) ) )
3736exlimdvv 1849 . . . 4  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  (
q  e.  Q.  /\  r  e.  Q. )
)  /\  q  <Q  r )  ->  ( E. d E. u ( ( d  e.  Q.  /\  u  e.  Q. )  /\  ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A )  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) ) )  ->  (
q  e.  ( 1st `  ( A  .P.  B
) )  \/  r  e.  ( 2nd `  ( A  .P.  B ) ) ) ) )
387, 37mpd 13 . . 3  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  (
q  e.  Q.  /\  r  e.  Q. )
)  /\  q  <Q  r )  ->  ( q  e.  ( 1st `  ( A  .P.  B ) )  \/  r  e.  ( 2nd `  ( A  .P.  B ) ) ) )
3938ex 114 . 2  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )
)  ->  ( q  <Q  r  ->  ( q  e.  ( 1st `  ( A  .P.  B ) )  \/  r  e.  ( 2nd `  ( A  .P.  B ) ) ) ) )
4039ralrimivva 2486 1  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  A. q  e.  Q.  A. r  e.  Q.  (
q  <Q  r  ->  (
q  e.  ( 1st `  ( A  .P.  B
) )  \/  r  e.  ( 2nd `  ( A  .P.  B ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    \/ wo 680    /\ w3a 943   E.wex 1449    e. wcel 1461   A.wral 2388   E.wrex 2389   <.cop 3494   class class class wbr 3893   ` cfv 5079  (class class class)co 5726   1stc1st 5988   2ndc2nd 5989   Q.cnq 7030    .Q cmq 7033    <Q cltq 7035   P.cnp 7041    .P. cmp 7044
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-13 1472  ax-14 1473  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095  ax-coll 4001  ax-sep 4004  ax-nul 4012  ax-pow 4056  ax-pr 4089  ax-un 4313  ax-setind 4410  ax-iinf 4460
This theorem depends on definitions:  df-bi 116  df-dc 803  df-3or 944  df-3an 945  df-tru 1315  df-fal 1318  df-nf 1418  df-sb 1717  df-eu 1976  df-mo 1977  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-ne 2281  df-ral 2393  df-rex 2394  df-reu 2395  df-rab 2397  df-v 2657  df-sbc 2877  df-csb 2970  df-dif 3037  df-un 3039  df-in 3041  df-ss 3048  df-nul 3328  df-pw 3476  df-sn 3497  df-pr 3498  df-op 3500  df-uni 3701  df-int 3736  df-iun 3779  df-br 3894  df-opab 3948  df-mpt 3949  df-tr 3985  df-eprel 4169  df-id 4173  df-po 4176  df-iso 4177  df-iord 4246  df-on 4248  df-suc 4251  df-iom 4463  df-xp 4503  df-rel 4504  df-cnv 4505  df-co 4506  df-dm 4507  df-rn 4508  df-res 4509  df-ima 4510  df-iota 5044  df-fun 5081  df-fn 5082  df-f 5083  df-f1 5084  df-fo 5085  df-f1o 5086  df-fv 5087  df-ov 5729  df-oprab 5730  df-mpo 5731  df-1st 5990  df-2nd 5991  df-recs 6154  df-irdg 6219  df-1o 6265  df-2o 6266  df-oadd 6269  df-omul 6270  df-er 6381  df-ec 6383  df-qs 6387  df-ni 7054  df-pli 7055  df-mi 7056  df-lti 7057  df-plpq 7094  df-mpq 7095  df-enq 7097  df-nqqs 7098  df-plqqs 7099  df-mqqs 7100  df-1nqqs 7101  df-rq 7102  df-ltnqqs 7103  df-enq0 7174  df-nq0 7175  df-0nq0 7176  df-plq0 7177  df-mq0 7178  df-inp 7216  df-imp 7219
This theorem is referenced by:  mulclpr  7322
  Copyright terms: Public domain W3C validator