ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mullocpr Unicode version

Theorem mullocpr 7633
Description: Locatedness of multiplication on positive reals. Lemma 12.9 in [BauerTaylor], p. 56 (but where both  A and  B are positive, not just  A). (Contributed by Jim Kingdon, 8-Dec-2019.)
Assertion
Ref Expression
mullocpr  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  A. q  e.  Q.  A. r  e.  Q.  (
q  <Q  r  ->  (
q  e.  ( 1st `  ( A  .P.  B
) )  \/  r  e.  ( 2nd `  ( A  .P.  B ) ) ) ) )
Distinct variable groups:    A, q, r    B, q, r

Proof of Theorem mullocpr
Dummy variables  d  e  t  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prop 7537 . . . . . . . 8  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
2 prmuloc 7628 . . . . . . . 8  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  q  <Q  r )  ->  E. d  e.  Q.  E. u  e.  Q.  (
d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A
)  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) ) )
31, 2sylan 283 . . . . . . 7  |-  ( ( A  e.  P.  /\  q  <Q  r )  ->  E. d  e.  Q.  E. u  e.  Q.  (
d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A
)  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) ) )
4 r2ex 2514 . . . . . . 7  |-  ( E. d  e.  Q.  E. u  e.  Q.  (
d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A
)  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) )  <->  E. d E. u
( ( d  e. 
Q.  /\  u  e.  Q. )  /\  (
d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A
)  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) ) ) )
53, 4sylib 122 . . . . . 6  |-  ( ( A  e.  P.  /\  q  <Q  r )  ->  E. d E. u ( ( d  e.  Q.  /\  u  e.  Q. )  /\  ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A )  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) ) ) )
65adantlr 477 . . . . 5  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  q  <Q  r )  ->  E. d E. u
( ( d  e. 
Q.  /\  u  e.  Q. )  /\  (
d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A
)  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) ) ) )
76adantlr 477 . . . 4  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  (
q  e.  Q.  /\  r  e.  Q. )
)  /\  q  <Q  r )  ->  E. d E. u ( ( d  e.  Q.  /\  u  e.  Q. )  /\  (
d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A
)  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) ) ) )
8 simprr3 1049 . . . . . . . 8  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  (
q  e.  Q.  /\  r  e.  Q. )
)  /\  q  <Q  r )  /\  ( ( d  e.  Q.  /\  u  e.  Q. )  /\  ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A )  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) ) ) )  -> 
( u  .Q  q
)  <Q  ( d  .Q  r ) )
9 simprl 529 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  (
q  e.  Q.  /\  r  e.  Q. )
)  /\  q  <Q  r )  /\  ( ( d  e.  Q.  /\  u  e.  Q. )  /\  ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A )  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) ) ) )  -> 
( d  e.  Q.  /\  u  e.  Q. )
)
10 mulclnq 7438 . . . . . . . . 9  |-  ( ( d  e.  Q.  /\  u  e.  Q. )  ->  ( d  .Q  u
)  e.  Q. )
119, 10syl 14 . . . . . . . 8  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  (
q  e.  Q.  /\  r  e.  Q. )
)  /\  q  <Q  r )  /\  ( ( d  e.  Q.  /\  u  e.  Q. )  /\  ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A )  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) ) ) )  -> 
( d  .Q  u
)  e.  Q. )
12 appdivnq 7625 . . . . . . . 8  |-  ( ( ( u  .Q  q
)  <Q  ( d  .Q  r )  /\  (
d  .Q  u )  e.  Q. )  ->  E. e  e.  Q.  ( ( u  .Q  q )  <Q  (
e  .Q  ( d  .Q  u ) )  /\  ( e  .Q  ( d  .Q  u
) )  <Q  (
d  .Q  r ) ) )
138, 11, 12syl2anc 411 . . . . . . 7  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  (
q  e.  Q.  /\  r  e.  Q. )
)  /\  q  <Q  r )  /\  ( ( d  e.  Q.  /\  u  e.  Q. )  /\  ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A )  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) ) ) )  ->  E. e  e.  Q.  ( ( u  .Q  q )  <Q  (
e  .Q  ( d  .Q  u ) )  /\  ( e  .Q  ( d  .Q  u
) )  <Q  (
d  .Q  r ) ) )
14 simprrr 540 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )
)  /\  q  <Q  r )  /\  ( ( d  e.  Q.  /\  u  e.  Q. )  /\  ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A )  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) ) ) )  /\  ( e  e.  Q.  /\  ( ( u  .Q  q )  <Q  (
e  .Q  ( d  .Q  u ) )  /\  ( e  .Q  ( d  .Q  u
) )  <Q  (
d  .Q  r ) ) ) )  -> 
( e  .Q  (
d  .Q  u ) )  <Q  ( d  .Q  r ) )
1511adantr 276 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )
)  /\  q  <Q  r )  /\  ( ( d  e.  Q.  /\  u  e.  Q. )  /\  ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A )  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) ) ) )  /\  ( e  e.  Q.  /\  ( ( u  .Q  q )  <Q  (
e  .Q  ( d  .Q  u ) )  /\  ( e  .Q  ( d  .Q  u
) )  <Q  (
d  .Q  r ) ) ) )  -> 
( d  .Q  u
)  e.  Q. )
16 appdivnq 7625 . . . . . . . . 9  |-  ( ( ( e  .Q  (
d  .Q  u ) )  <Q  ( d  .Q  r )  /\  (
d  .Q  u )  e.  Q. )  ->  E. t  e.  Q.  ( ( e  .Q  ( d  .Q  u
) )  <Q  (
t  .Q  ( d  .Q  u ) )  /\  ( t  .Q  ( d  .Q  u
) )  <Q  (
d  .Q  r ) ) )
1714, 15, 16syl2anc 411 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )
)  /\  q  <Q  r )  /\  ( ( d  e.  Q.  /\  u  e.  Q. )  /\  ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A )  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) ) ) )  /\  ( e  e.  Q.  /\  ( ( u  .Q  q )  <Q  (
e  .Q  ( d  .Q  u ) )  /\  ( e  .Q  ( d  .Q  u
) )  <Q  (
d  .Q  r ) ) ) )  ->  E. t  e.  Q.  ( ( e  .Q  ( d  .Q  u
) )  <Q  (
t  .Q  ( d  .Q  u ) )  /\  ( t  .Q  ( d  .Q  u
) )  <Q  (
d  .Q  r ) ) )
18 simplll 533 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  (
q  e.  Q.  /\  r  e.  Q. )
)  /\  q  <Q  r )  /\  ( ( d  e.  Q.  /\  u  e.  Q. )  /\  ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A )  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) ) ) )  -> 
( A  e.  P.  /\  B  e.  P. )
)
1918ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )
)  /\  q  <Q  r )  /\  ( ( d  e.  Q.  /\  u  e.  Q. )  /\  ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A )  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) ) ) )  /\  ( e  e.  Q.  /\  ( ( u  .Q  q )  <Q  (
e  .Q  ( d  .Q  u ) )  /\  ( e  .Q  ( d  .Q  u
) )  <Q  (
d  .Q  r ) ) ) )  /\  ( t  e.  Q.  /\  ( ( e  .Q  ( d  .Q  u
) )  <Q  (
t  .Q  ( d  .Q  u ) )  /\  ( t  .Q  ( d  .Q  u
) )  <Q  (
d  .Q  r ) ) ) )  -> 
( A  e.  P.  /\  B  e.  P. )
)
20 simprl 529 . . . . . . . . . 10  |-  ( ( e  e.  Q.  /\  ( ( u  .Q  q )  <Q  (
e  .Q  ( d  .Q  u ) )  /\  ( e  .Q  ( d  .Q  u
) )  <Q  (
d  .Q  r ) ) )  ->  (
u  .Q  q ) 
<Q  ( e  .Q  (
d  .Q  u ) ) )
2120ad2antlr 489 . . . . . . . . 9  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )
)  /\  q  <Q  r )  /\  ( ( d  e.  Q.  /\  u  e.  Q. )  /\  ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A )  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) ) ) )  /\  ( e  e.  Q.  /\  ( ( u  .Q  q )  <Q  (
e  .Q  ( d  .Q  u ) )  /\  ( e  .Q  ( d  .Q  u
) )  <Q  (
d  .Q  r ) ) ) )  /\  ( t  e.  Q.  /\  ( ( e  .Q  ( d  .Q  u
) )  <Q  (
t  .Q  ( d  .Q  u ) )  /\  ( t  .Q  ( d  .Q  u
) )  <Q  (
d  .Q  r ) ) ) )  -> 
( u  .Q  q
)  <Q  ( e  .Q  ( d  .Q  u
) ) )
22 simprrl 539 . . . . . . . . 9  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )
)  /\  q  <Q  r )  /\  ( ( d  e.  Q.  /\  u  e.  Q. )  /\  ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A )  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) ) ) )  /\  ( e  e.  Q.  /\  ( ( u  .Q  q )  <Q  (
e  .Q  ( d  .Q  u ) )  /\  ( e  .Q  ( d  .Q  u
) )  <Q  (
d  .Q  r ) ) ) )  /\  ( t  e.  Q.  /\  ( ( e  .Q  ( d  .Q  u
) )  <Q  (
t  .Q  ( d  .Q  u ) )  /\  ( t  .Q  ( d  .Q  u
) )  <Q  (
d  .Q  r ) ) ) )  -> 
( e  .Q  (
d  .Q  u ) )  <Q  ( t  .Q  ( d  .Q  u
) ) )
23 simprrr 540 . . . . . . . . 9  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )
)  /\  q  <Q  r )  /\  ( ( d  e.  Q.  /\  u  e.  Q. )  /\  ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A )  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) ) ) )  /\  ( e  e.  Q.  /\  ( ( u  .Q  q )  <Q  (
e  .Q  ( d  .Q  u ) )  /\  ( e  .Q  ( d  .Q  u
) )  <Q  (
d  .Q  r ) ) ) )  /\  ( t  e.  Q.  /\  ( ( e  .Q  ( d  .Q  u
) )  <Q  (
t  .Q  ( d  .Q  u ) )  /\  ( t  .Q  ( d  .Q  u
) )  <Q  (
d  .Q  r ) ) ) )  -> 
( t  .Q  (
d  .Q  u ) )  <Q  ( d  .Q  r ) )
24 simpllr 534 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  (
q  e.  Q.  /\  r  e.  Q. )
)  /\  q  <Q  r )  /\  ( ( d  e.  Q.  /\  u  e.  Q. )  /\  ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A )  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) ) ) )  -> 
( q  e.  Q.  /\  r  e.  Q. )
)
2524ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )
)  /\  q  <Q  r )  /\  ( ( d  e.  Q.  /\  u  e.  Q. )  /\  ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A )  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) ) ) )  /\  ( e  e.  Q.  /\  ( ( u  .Q  q )  <Q  (
e  .Q  ( d  .Q  u ) )  /\  ( e  .Q  ( d  .Q  u
) )  <Q  (
d  .Q  r ) ) ) )  /\  ( t  e.  Q.  /\  ( ( e  .Q  ( d  .Q  u
) )  <Q  (
t  .Q  ( d  .Q  u ) )  /\  ( t  .Q  ( d  .Q  u
) )  <Q  (
d  .Q  r ) ) ) )  -> 
( q  e.  Q.  /\  r  e.  Q. )
)
269ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )
)  /\  q  <Q  r )  /\  ( ( d  e.  Q.  /\  u  e.  Q. )  /\  ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A )  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) ) ) )  /\  ( e  e.  Q.  /\  ( ( u  .Q  q )  <Q  (
e  .Q  ( d  .Q  u ) )  /\  ( e  .Q  ( d  .Q  u
) )  <Q  (
d  .Q  r ) ) ) )  /\  ( t  e.  Q.  /\  ( ( e  .Q  ( d  .Q  u
) )  <Q  (
t  .Q  ( d  .Q  u ) )  /\  ( t  .Q  ( d  .Q  u
) )  <Q  (
d  .Q  r ) ) ) )  -> 
( d  e.  Q.  /\  u  e.  Q. )
)
27 3simpa 996 . . . . . . . . . . 11  |-  ( ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A
)  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) )  ->  ( d  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )
2827ad2antll 491 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  (
q  e.  Q.  /\  r  e.  Q. )
)  /\  q  <Q  r )  /\  ( ( d  e.  Q.  /\  u  e.  Q. )  /\  ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A )  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) ) ) )  -> 
( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A ) ) )
2928ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )
)  /\  q  <Q  r )  /\  ( ( d  e.  Q.  /\  u  e.  Q. )  /\  ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A )  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) ) ) )  /\  ( e  e.  Q.  /\  ( ( u  .Q  q )  <Q  (
e  .Q  ( d  .Q  u ) )  /\  ( e  .Q  ( d  .Q  u
) )  <Q  (
d  .Q  r ) ) ) )  /\  ( t  e.  Q.  /\  ( ( e  .Q  ( d  .Q  u
) )  <Q  (
t  .Q  ( d  .Q  u ) )  /\  ( t  .Q  ( d  .Q  u
) )  <Q  (
d  .Q  r ) ) ) )  -> 
( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A ) ) )
30 simplrl 535 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )
)  /\  q  <Q  r )  /\  ( ( d  e.  Q.  /\  u  e.  Q. )  /\  ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A )  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) ) ) )  /\  ( e  e.  Q.  /\  ( ( u  .Q  q )  <Q  (
e  .Q  ( d  .Q  u ) )  /\  ( e  .Q  ( d  .Q  u
) )  <Q  (
d  .Q  r ) ) ) )  /\  ( t  e.  Q.  /\  ( ( e  .Q  ( d  .Q  u
) )  <Q  (
t  .Q  ( d  .Q  u ) )  /\  ( t  .Q  ( d  .Q  u
) )  <Q  (
d  .Q  r ) ) ) )  -> 
e  e.  Q. )
31 simprl 529 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )
)  /\  q  <Q  r )  /\  ( ( d  e.  Q.  /\  u  e.  Q. )  /\  ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A )  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) ) ) )  /\  ( e  e.  Q.  /\  ( ( u  .Q  q )  <Q  (
e  .Q  ( d  .Q  u ) )  /\  ( e  .Q  ( d  .Q  u
) )  <Q  (
d  .Q  r ) ) ) )  /\  ( t  e.  Q.  /\  ( ( e  .Q  ( d  .Q  u
) )  <Q  (
t  .Q  ( d  .Q  u ) )  /\  ( t  .Q  ( d  .Q  u
) )  <Q  (
d  .Q  r ) ) ) )  -> 
t  e.  Q. )
3230, 31jca 306 . . . . . . . . 9  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )
)  /\  q  <Q  r )  /\  ( ( d  e.  Q.  /\  u  e.  Q. )  /\  ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A )  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) ) ) )  /\  ( e  e.  Q.  /\  ( ( u  .Q  q )  <Q  (
e  .Q  ( d  .Q  u ) )  /\  ( e  .Q  ( d  .Q  u
) )  <Q  (
d  .Q  r ) ) ) )  /\  ( t  e.  Q.  /\  ( ( e  .Q  ( d  .Q  u
) )  <Q  (
t  .Q  ( d  .Q  u ) )  /\  ( t  .Q  ( d  .Q  u
) )  <Q  (
d  .Q  r ) ) ) )  -> 
( e  e.  Q.  /\  t  e.  Q. )
)
3319, 21, 22, 23, 25, 26, 29, 32mullocprlem 7632 . . . . . . . 8  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )
)  /\  q  <Q  r )  /\  ( ( d  e.  Q.  /\  u  e.  Q. )  /\  ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A )  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) ) ) )  /\  ( e  e.  Q.  /\  ( ( u  .Q  q )  <Q  (
e  .Q  ( d  .Q  u ) )  /\  ( e  .Q  ( d  .Q  u
) )  <Q  (
d  .Q  r ) ) ) )  /\  ( t  e.  Q.  /\  ( ( e  .Q  ( d  .Q  u
) )  <Q  (
t  .Q  ( d  .Q  u ) )  /\  ( t  .Q  ( d  .Q  u
) )  <Q  (
d  .Q  r ) ) ) )  -> 
( q  e.  ( 1st `  ( A  .P.  B ) )  \/  r  e.  ( 2nd `  ( A  .P.  B ) ) ) )
3417, 33rexlimddv 2616 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )
)  /\  q  <Q  r )  /\  ( ( d  e.  Q.  /\  u  e.  Q. )  /\  ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A )  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) ) ) )  /\  ( e  e.  Q.  /\  ( ( u  .Q  q )  <Q  (
e  .Q  ( d  .Q  u ) )  /\  ( e  .Q  ( d  .Q  u
) )  <Q  (
d  .Q  r ) ) ) )  -> 
( q  e.  ( 1st `  ( A  .P.  B ) )  \/  r  e.  ( 2nd `  ( A  .P.  B ) ) ) )
3513, 34rexlimddv 2616 . . . . . 6  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  (
q  e.  Q.  /\  r  e.  Q. )
)  /\  q  <Q  r )  /\  ( ( d  e.  Q.  /\  u  e.  Q. )  /\  ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A )  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) ) ) )  -> 
( q  e.  ( 1st `  ( A  .P.  B ) )  \/  r  e.  ( 2nd `  ( A  .P.  B ) ) ) )
3635ex 115 . . . . 5  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  (
q  e.  Q.  /\  r  e.  Q. )
)  /\  q  <Q  r )  ->  ( (
( d  e.  Q.  /\  u  e.  Q. )  /\  ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A )  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) ) )  ->  (
q  e.  ( 1st `  ( A  .P.  B
) )  \/  r  e.  ( 2nd `  ( A  .P.  B ) ) ) ) )
3736exlimdvv 1909 . . . 4  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  (
q  e.  Q.  /\  r  e.  Q. )
)  /\  q  <Q  r )  ->  ( E. d E. u ( ( d  e.  Q.  /\  u  e.  Q. )  /\  ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A )  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) ) )  ->  (
q  e.  ( 1st `  ( A  .P.  B
) )  \/  r  e.  ( 2nd `  ( A  .P.  B ) ) ) ) )
387, 37mpd 13 . . 3  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  (
q  e.  Q.  /\  r  e.  Q. )
)  /\  q  <Q  r )  ->  ( q  e.  ( 1st `  ( A  .P.  B ) )  \/  r  e.  ( 2nd `  ( A  .P.  B ) ) ) )
3938ex 115 . 2  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )
)  ->  ( q  <Q  r  ->  ( q  e.  ( 1st `  ( A  .P.  B ) )  \/  r  e.  ( 2nd `  ( A  .P.  B ) ) ) ) )
4039ralrimivva 2576 1  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  A. q  e.  Q.  A. r  e.  Q.  (
q  <Q  r  ->  (
q  e.  ( 1st `  ( A  .P.  B
) )  \/  r  e.  ( 2nd `  ( A  .P.  B ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 709    /\ w3a 980   E.wex 1503    e. wcel 2164   A.wral 2472   E.wrex 2473   <.cop 3622   class class class wbr 4030   ` cfv 5255  (class class class)co 5919   1stc1st 6193   2ndc2nd 6194   Q.cnq 7342    .Q cmq 7345    <Q cltq 7347   P.cnp 7353    .P. cmp 7356
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-eprel 4321  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-irdg 6425  df-1o 6471  df-2o 6472  df-oadd 6475  df-omul 6476  df-er 6589  df-ec 6591  df-qs 6595  df-ni 7366  df-pli 7367  df-mi 7368  df-lti 7369  df-plpq 7406  df-mpq 7407  df-enq 7409  df-nqqs 7410  df-plqqs 7411  df-mqqs 7412  df-1nqqs 7413  df-rq 7414  df-ltnqqs 7415  df-enq0 7486  df-nq0 7487  df-0nq0 7488  df-plq0 7489  df-mq0 7490  df-inp 7528  df-imp 7531
This theorem is referenced by:  mulclpr  7634
  Copyright terms: Public domain W3C validator