ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mullocpr Unicode version

Theorem mullocpr 7347
Description: Locatedness of multiplication on positive reals. Lemma 12.9 in [BauerTaylor], p. 56 (but where both  A and  B are positive, not just  A). (Contributed by Jim Kingdon, 8-Dec-2019.)
Assertion
Ref Expression
mullocpr  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  A. q  e.  Q.  A. r  e.  Q.  (
q  <Q  r  ->  (
q  e.  ( 1st `  ( A  .P.  B
) )  \/  r  e.  ( 2nd `  ( A  .P.  B ) ) ) ) )
Distinct variable groups:    A, q, r    B, q, r

Proof of Theorem mullocpr
Dummy variables  d  e  t  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prop 7251 . . . . . . . 8  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
2 prmuloc 7342 . . . . . . . 8  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  q  <Q  r )  ->  E. d  e.  Q.  E. u  e.  Q.  (
d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A
)  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) ) )
31, 2sylan 281 . . . . . . 7  |-  ( ( A  e.  P.  /\  q  <Q  r )  ->  E. d  e.  Q.  E. u  e.  Q.  (
d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A
)  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) ) )
4 r2ex 2432 . . . . . . 7  |-  ( E. d  e.  Q.  E. u  e.  Q.  (
d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A
)  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) )  <->  E. d E. u
( ( d  e. 
Q.  /\  u  e.  Q. )  /\  (
d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A
)  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) ) ) )
53, 4sylib 121 . . . . . 6  |-  ( ( A  e.  P.  /\  q  <Q  r )  ->  E. d E. u ( ( d  e.  Q.  /\  u  e.  Q. )  /\  ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A )  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) ) ) )
65adantlr 468 . . . . 5  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  q  <Q  r )  ->  E. d E. u
( ( d  e. 
Q.  /\  u  e.  Q. )  /\  (
d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A
)  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) ) ) )
76adantlr 468 . . . 4  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  (
q  e.  Q.  /\  r  e.  Q. )
)  /\  q  <Q  r )  ->  E. d E. u ( ( d  e.  Q.  /\  u  e.  Q. )  /\  (
d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A
)  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) ) ) )
8 simprr3 1016 . . . . . . . 8  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  (
q  e.  Q.  /\  r  e.  Q. )
)  /\  q  <Q  r )  /\  ( ( d  e.  Q.  /\  u  e.  Q. )  /\  ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A )  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) ) ) )  -> 
( u  .Q  q
)  <Q  ( d  .Q  r ) )
9 simprl 505 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  (
q  e.  Q.  /\  r  e.  Q. )
)  /\  q  <Q  r )  /\  ( ( d  e.  Q.  /\  u  e.  Q. )  /\  ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A )  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) ) ) )  -> 
( d  e.  Q.  /\  u  e.  Q. )
)
10 mulclnq 7152 . . . . . . . . 9  |-  ( ( d  e.  Q.  /\  u  e.  Q. )  ->  ( d  .Q  u
)  e.  Q. )
119, 10syl 14 . . . . . . . 8  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  (
q  e.  Q.  /\  r  e.  Q. )
)  /\  q  <Q  r )  /\  ( ( d  e.  Q.  /\  u  e.  Q. )  /\  ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A )  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) ) ) )  -> 
( d  .Q  u
)  e.  Q. )
12 appdivnq 7339 . . . . . . . 8  |-  ( ( ( u  .Q  q
)  <Q  ( d  .Q  r )  /\  (
d  .Q  u )  e.  Q. )  ->  E. e  e.  Q.  ( ( u  .Q  q )  <Q  (
e  .Q  ( d  .Q  u ) )  /\  ( e  .Q  ( d  .Q  u
) )  <Q  (
d  .Q  r ) ) )
138, 11, 12syl2anc 408 . . . . . . 7  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  (
q  e.  Q.  /\  r  e.  Q. )
)  /\  q  <Q  r )  /\  ( ( d  e.  Q.  /\  u  e.  Q. )  /\  ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A )  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) ) ) )  ->  E. e  e.  Q.  ( ( u  .Q  q )  <Q  (
e  .Q  ( d  .Q  u ) )  /\  ( e  .Q  ( d  .Q  u
) )  <Q  (
d  .Q  r ) ) )
14 simprrr 514 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )
)  /\  q  <Q  r )  /\  ( ( d  e.  Q.  /\  u  e.  Q. )  /\  ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A )  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) ) ) )  /\  ( e  e.  Q.  /\  ( ( u  .Q  q )  <Q  (
e  .Q  ( d  .Q  u ) )  /\  ( e  .Q  ( d  .Q  u
) )  <Q  (
d  .Q  r ) ) ) )  -> 
( e  .Q  (
d  .Q  u ) )  <Q  ( d  .Q  r ) )
1511adantr 274 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )
)  /\  q  <Q  r )  /\  ( ( d  e.  Q.  /\  u  e.  Q. )  /\  ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A )  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) ) ) )  /\  ( e  e.  Q.  /\  ( ( u  .Q  q )  <Q  (
e  .Q  ( d  .Q  u ) )  /\  ( e  .Q  ( d  .Q  u
) )  <Q  (
d  .Q  r ) ) ) )  -> 
( d  .Q  u
)  e.  Q. )
16 appdivnq 7339 . . . . . . . . 9  |-  ( ( ( e  .Q  (
d  .Q  u ) )  <Q  ( d  .Q  r )  /\  (
d  .Q  u )  e.  Q. )  ->  E. t  e.  Q.  ( ( e  .Q  ( d  .Q  u
) )  <Q  (
t  .Q  ( d  .Q  u ) )  /\  ( t  .Q  ( d  .Q  u
) )  <Q  (
d  .Q  r ) ) )
1714, 15, 16syl2anc 408 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )
)  /\  q  <Q  r )  /\  ( ( d  e.  Q.  /\  u  e.  Q. )  /\  ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A )  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) ) ) )  /\  ( e  e.  Q.  /\  ( ( u  .Q  q )  <Q  (
e  .Q  ( d  .Q  u ) )  /\  ( e  .Q  ( d  .Q  u
) )  <Q  (
d  .Q  r ) ) ) )  ->  E. t  e.  Q.  ( ( e  .Q  ( d  .Q  u
) )  <Q  (
t  .Q  ( d  .Q  u ) )  /\  ( t  .Q  ( d  .Q  u
) )  <Q  (
d  .Q  r ) ) )
18 simplll 507 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  (
q  e.  Q.  /\  r  e.  Q. )
)  /\  q  <Q  r )  /\  ( ( d  e.  Q.  /\  u  e.  Q. )  /\  ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A )  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) ) ) )  -> 
( A  e.  P.  /\  B  e.  P. )
)
1918ad2antrr 479 . . . . . . . . 9  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )
)  /\  q  <Q  r )  /\  ( ( d  e.  Q.  /\  u  e.  Q. )  /\  ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A )  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) ) ) )  /\  ( e  e.  Q.  /\  ( ( u  .Q  q )  <Q  (
e  .Q  ( d  .Q  u ) )  /\  ( e  .Q  ( d  .Q  u
) )  <Q  (
d  .Q  r ) ) ) )  /\  ( t  e.  Q.  /\  ( ( e  .Q  ( d  .Q  u
) )  <Q  (
t  .Q  ( d  .Q  u ) )  /\  ( t  .Q  ( d  .Q  u
) )  <Q  (
d  .Q  r ) ) ) )  -> 
( A  e.  P.  /\  B  e.  P. )
)
20 simprl 505 . . . . . . . . . 10  |-  ( ( e  e.  Q.  /\  ( ( u  .Q  q )  <Q  (
e  .Q  ( d  .Q  u ) )  /\  ( e  .Q  ( d  .Q  u
) )  <Q  (
d  .Q  r ) ) )  ->  (
u  .Q  q ) 
<Q  ( e  .Q  (
d  .Q  u ) ) )
2120ad2antlr 480 . . . . . . . . 9  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )
)  /\  q  <Q  r )  /\  ( ( d  e.  Q.  /\  u  e.  Q. )  /\  ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A )  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) ) ) )  /\  ( e  e.  Q.  /\  ( ( u  .Q  q )  <Q  (
e  .Q  ( d  .Q  u ) )  /\  ( e  .Q  ( d  .Q  u
) )  <Q  (
d  .Q  r ) ) ) )  /\  ( t  e.  Q.  /\  ( ( e  .Q  ( d  .Q  u
) )  <Q  (
t  .Q  ( d  .Q  u ) )  /\  ( t  .Q  ( d  .Q  u
) )  <Q  (
d  .Q  r ) ) ) )  -> 
( u  .Q  q
)  <Q  ( e  .Q  ( d  .Q  u
) ) )
22 simprrl 513 . . . . . . . . 9  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )
)  /\  q  <Q  r )  /\  ( ( d  e.  Q.  /\  u  e.  Q. )  /\  ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A )  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) ) ) )  /\  ( e  e.  Q.  /\  ( ( u  .Q  q )  <Q  (
e  .Q  ( d  .Q  u ) )  /\  ( e  .Q  ( d  .Q  u
) )  <Q  (
d  .Q  r ) ) ) )  /\  ( t  e.  Q.  /\  ( ( e  .Q  ( d  .Q  u
) )  <Q  (
t  .Q  ( d  .Q  u ) )  /\  ( t  .Q  ( d  .Q  u
) )  <Q  (
d  .Q  r ) ) ) )  -> 
( e  .Q  (
d  .Q  u ) )  <Q  ( t  .Q  ( d  .Q  u
) ) )
23 simprrr 514 . . . . . . . . 9  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )
)  /\  q  <Q  r )  /\  ( ( d  e.  Q.  /\  u  e.  Q. )  /\  ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A )  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) ) ) )  /\  ( e  e.  Q.  /\  ( ( u  .Q  q )  <Q  (
e  .Q  ( d  .Q  u ) )  /\  ( e  .Q  ( d  .Q  u
) )  <Q  (
d  .Q  r ) ) ) )  /\  ( t  e.  Q.  /\  ( ( e  .Q  ( d  .Q  u
) )  <Q  (
t  .Q  ( d  .Q  u ) )  /\  ( t  .Q  ( d  .Q  u
) )  <Q  (
d  .Q  r ) ) ) )  -> 
( t  .Q  (
d  .Q  u ) )  <Q  ( d  .Q  r ) )
24 simpllr 508 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  (
q  e.  Q.  /\  r  e.  Q. )
)  /\  q  <Q  r )  /\  ( ( d  e.  Q.  /\  u  e.  Q. )  /\  ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A )  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) ) ) )  -> 
( q  e.  Q.  /\  r  e.  Q. )
)
2524ad2antrr 479 . . . . . . . . 9  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )
)  /\  q  <Q  r )  /\  ( ( d  e.  Q.  /\  u  e.  Q. )  /\  ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A )  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) ) ) )  /\  ( e  e.  Q.  /\  ( ( u  .Q  q )  <Q  (
e  .Q  ( d  .Q  u ) )  /\  ( e  .Q  ( d  .Q  u
) )  <Q  (
d  .Q  r ) ) ) )  /\  ( t  e.  Q.  /\  ( ( e  .Q  ( d  .Q  u
) )  <Q  (
t  .Q  ( d  .Q  u ) )  /\  ( t  .Q  ( d  .Q  u
) )  <Q  (
d  .Q  r ) ) ) )  -> 
( q  e.  Q.  /\  r  e.  Q. )
)
269ad2antrr 479 . . . . . . . . 9  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )
)  /\  q  <Q  r )  /\  ( ( d  e.  Q.  /\  u  e.  Q. )  /\  ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A )  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) ) ) )  /\  ( e  e.  Q.  /\  ( ( u  .Q  q )  <Q  (
e  .Q  ( d  .Q  u ) )  /\  ( e  .Q  ( d  .Q  u
) )  <Q  (
d  .Q  r ) ) ) )  /\  ( t  e.  Q.  /\  ( ( e  .Q  ( d  .Q  u
) )  <Q  (
t  .Q  ( d  .Q  u ) )  /\  ( t  .Q  ( d  .Q  u
) )  <Q  (
d  .Q  r ) ) ) )  -> 
( d  e.  Q.  /\  u  e.  Q. )
)
27 3simpa 963 . . . . . . . . . . 11  |-  ( ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A
)  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) )  ->  ( d  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )
2827ad2antll 482 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  (
q  e.  Q.  /\  r  e.  Q. )
)  /\  q  <Q  r )  /\  ( ( d  e.  Q.  /\  u  e.  Q. )  /\  ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A )  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) ) ) )  -> 
( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A ) ) )
2928ad2antrr 479 . . . . . . . . 9  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )
)  /\  q  <Q  r )  /\  ( ( d  e.  Q.  /\  u  e.  Q. )  /\  ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A )  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) ) ) )  /\  ( e  e.  Q.  /\  ( ( u  .Q  q )  <Q  (
e  .Q  ( d  .Q  u ) )  /\  ( e  .Q  ( d  .Q  u
) )  <Q  (
d  .Q  r ) ) ) )  /\  ( t  e.  Q.  /\  ( ( e  .Q  ( d  .Q  u
) )  <Q  (
t  .Q  ( d  .Q  u ) )  /\  ( t  .Q  ( d  .Q  u
) )  <Q  (
d  .Q  r ) ) ) )  -> 
( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A ) ) )
30 simplrl 509 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )
)  /\  q  <Q  r )  /\  ( ( d  e.  Q.  /\  u  e.  Q. )  /\  ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A )  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) ) ) )  /\  ( e  e.  Q.  /\  ( ( u  .Q  q )  <Q  (
e  .Q  ( d  .Q  u ) )  /\  ( e  .Q  ( d  .Q  u
) )  <Q  (
d  .Q  r ) ) ) )  /\  ( t  e.  Q.  /\  ( ( e  .Q  ( d  .Q  u
) )  <Q  (
t  .Q  ( d  .Q  u ) )  /\  ( t  .Q  ( d  .Q  u
) )  <Q  (
d  .Q  r ) ) ) )  -> 
e  e.  Q. )
31 simprl 505 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )
)  /\  q  <Q  r )  /\  ( ( d  e.  Q.  /\  u  e.  Q. )  /\  ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A )  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) ) ) )  /\  ( e  e.  Q.  /\  ( ( u  .Q  q )  <Q  (
e  .Q  ( d  .Q  u ) )  /\  ( e  .Q  ( d  .Q  u
) )  <Q  (
d  .Q  r ) ) ) )  /\  ( t  e.  Q.  /\  ( ( e  .Q  ( d  .Q  u
) )  <Q  (
t  .Q  ( d  .Q  u ) )  /\  ( t  .Q  ( d  .Q  u
) )  <Q  (
d  .Q  r ) ) ) )  -> 
t  e.  Q. )
3230, 31jca 304 . . . . . . . . 9  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )
)  /\  q  <Q  r )  /\  ( ( d  e.  Q.  /\  u  e.  Q. )  /\  ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A )  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) ) ) )  /\  ( e  e.  Q.  /\  ( ( u  .Q  q )  <Q  (
e  .Q  ( d  .Q  u ) )  /\  ( e  .Q  ( d  .Q  u
) )  <Q  (
d  .Q  r ) ) ) )  /\  ( t  e.  Q.  /\  ( ( e  .Q  ( d  .Q  u
) )  <Q  (
t  .Q  ( d  .Q  u ) )  /\  ( t  .Q  ( d  .Q  u
) )  <Q  (
d  .Q  r ) ) ) )  -> 
( e  e.  Q.  /\  t  e.  Q. )
)
3319, 21, 22, 23, 25, 26, 29, 32mullocprlem 7346 . . . . . . . 8  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )
)  /\  q  <Q  r )  /\  ( ( d  e.  Q.  /\  u  e.  Q. )  /\  ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A )  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) ) ) )  /\  ( e  e.  Q.  /\  ( ( u  .Q  q )  <Q  (
e  .Q  ( d  .Q  u ) )  /\  ( e  .Q  ( d  .Q  u
) )  <Q  (
d  .Q  r ) ) ) )  /\  ( t  e.  Q.  /\  ( ( e  .Q  ( d  .Q  u
) )  <Q  (
t  .Q  ( d  .Q  u ) )  /\  ( t  .Q  ( d  .Q  u
) )  <Q  (
d  .Q  r ) ) ) )  -> 
( q  e.  ( 1st `  ( A  .P.  B ) )  \/  r  e.  ( 2nd `  ( A  .P.  B ) ) ) )
3417, 33rexlimddv 2531 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )
)  /\  q  <Q  r )  /\  ( ( d  e.  Q.  /\  u  e.  Q. )  /\  ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A )  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) ) ) )  /\  ( e  e.  Q.  /\  ( ( u  .Q  q )  <Q  (
e  .Q  ( d  .Q  u ) )  /\  ( e  .Q  ( d  .Q  u
) )  <Q  (
d  .Q  r ) ) ) )  -> 
( q  e.  ( 1st `  ( A  .P.  B ) )  \/  r  e.  ( 2nd `  ( A  .P.  B ) ) ) )
3513, 34rexlimddv 2531 . . . . . 6  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  (
q  e.  Q.  /\  r  e.  Q. )
)  /\  q  <Q  r )  /\  ( ( d  e.  Q.  /\  u  e.  Q. )  /\  ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A )  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) ) ) )  -> 
( q  e.  ( 1st `  ( A  .P.  B ) )  \/  r  e.  ( 2nd `  ( A  .P.  B ) ) ) )
3635ex 114 . . . . 5  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  (
q  e.  Q.  /\  r  e.  Q. )
)  /\  q  <Q  r )  ->  ( (
( d  e.  Q.  /\  u  e.  Q. )  /\  ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A )  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) ) )  ->  (
q  e.  ( 1st `  ( A  .P.  B
) )  \/  r  e.  ( 2nd `  ( A  .P.  B ) ) ) ) )
3736exlimdvv 1853 . . . 4  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  (
q  e.  Q.  /\  r  e.  Q. )
)  /\  q  <Q  r )  ->  ( E. d E. u ( ( d  e.  Q.  /\  u  e.  Q. )  /\  ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A )  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) ) )  ->  (
q  e.  ( 1st `  ( A  .P.  B
) )  \/  r  e.  ( 2nd `  ( A  .P.  B ) ) ) ) )
387, 37mpd 13 . . 3  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  (
q  e.  Q.  /\  r  e.  Q. )
)  /\  q  <Q  r )  ->  ( q  e.  ( 1st `  ( A  .P.  B ) )  \/  r  e.  ( 2nd `  ( A  .P.  B ) ) ) )
3938ex 114 . 2  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )
)  ->  ( q  <Q  r  ->  ( q  e.  ( 1st `  ( A  .P.  B ) )  \/  r  e.  ( 2nd `  ( A  .P.  B ) ) ) ) )
4039ralrimivva 2491 1  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  A. q  e.  Q.  A. r  e.  Q.  (
q  <Q  r  ->  (
q  e.  ( 1st `  ( A  .P.  B
) )  \/  r  e.  ( 2nd `  ( A  .P.  B ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    \/ wo 682    /\ w3a 947   E.wex 1453    e. wcel 1465   A.wral 2393   E.wrex 2394   <.cop 3500   class class class wbr 3899   ` cfv 5093  (class class class)co 5742   1stc1st 6004   2ndc2nd 6005   Q.cnq 7056    .Q cmq 7059    <Q cltq 7061   P.cnp 7067    .P. cmp 7070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-coll 4013  ax-sep 4016  ax-nul 4024  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422  ax-iinf 4472
This theorem depends on definitions:  df-bi 116  df-dc 805  df-3or 948  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-ral 2398  df-rex 2399  df-reu 2400  df-rab 2402  df-v 2662  df-sbc 2883  df-csb 2976  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-nul 3334  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-int 3742  df-iun 3785  df-br 3900  df-opab 3960  df-mpt 3961  df-tr 3997  df-eprel 4181  df-id 4185  df-po 4188  df-iso 4189  df-iord 4258  df-on 4260  df-suc 4263  df-iom 4475  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-rn 4520  df-res 4521  df-ima 4522  df-iota 5058  df-fun 5095  df-fn 5096  df-f 5097  df-f1 5098  df-fo 5099  df-f1o 5100  df-fv 5101  df-ov 5745  df-oprab 5746  df-mpo 5747  df-1st 6006  df-2nd 6007  df-recs 6170  df-irdg 6235  df-1o 6281  df-2o 6282  df-oadd 6285  df-omul 6286  df-er 6397  df-ec 6399  df-qs 6403  df-ni 7080  df-pli 7081  df-mi 7082  df-lti 7083  df-plpq 7120  df-mpq 7121  df-enq 7123  df-nqqs 7124  df-plqqs 7125  df-mqqs 7126  df-1nqqs 7127  df-rq 7128  df-ltnqqs 7129  df-enq0 7200  df-nq0 7201  df-0nq0 7202  df-plq0 7203  df-mq0 7204  df-inp 7242  df-imp 7245
This theorem is referenced by:  mulclpr  7348
  Copyright terms: Public domain W3C validator