ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mullocpr Unicode version

Theorem mullocpr 7033
Description: Locatedness of multiplication on positive reals. Lemma 12.9 in [BauerTaylor], p. 56 (but where both  A and  B are positive, not just  A). (Contributed by Jim Kingdon, 8-Dec-2019.)
Assertion
Ref Expression
mullocpr  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  A. q  e.  Q.  A. r  e.  Q.  (
q  <Q  r  ->  (
q  e.  ( 1st `  ( A  .P.  B
) )  \/  r  e.  ( 2nd `  ( A  .P.  B ) ) ) ) )
Distinct variable groups:    A, q, r    B, q, r

Proof of Theorem mullocpr
Dummy variables  d  e  t  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prop 6937 . . . . . . . 8  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
2 prmuloc 7028 . . . . . . . 8  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  q  <Q  r )  ->  E. d  e.  Q.  E. u  e.  Q.  (
d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A
)  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) ) )
31, 2sylan 277 . . . . . . 7  |-  ( ( A  e.  P.  /\  q  <Q  r )  ->  E. d  e.  Q.  E. u  e.  Q.  (
d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A
)  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) ) )
4 r2ex 2392 . . . . . . 7  |-  ( E. d  e.  Q.  E. u  e.  Q.  (
d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A
)  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) )  <->  E. d E. u
( ( d  e. 
Q.  /\  u  e.  Q. )  /\  (
d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A
)  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) ) ) )
53, 4sylib 120 . . . . . 6  |-  ( ( A  e.  P.  /\  q  <Q  r )  ->  E. d E. u ( ( d  e.  Q.  /\  u  e.  Q. )  /\  ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A )  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) ) ) )
65adantlr 461 . . . . 5  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  q  <Q  r )  ->  E. d E. u
( ( d  e. 
Q.  /\  u  e.  Q. )  /\  (
d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A
)  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) ) ) )
76adantlr 461 . . . 4  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  (
q  e.  Q.  /\  r  e.  Q. )
)  /\  q  <Q  r )  ->  E. d E. u ( ( d  e.  Q.  /\  u  e.  Q. )  /\  (
d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A
)  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) ) ) )
8 simprr3 989 . . . . . . . 8  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  (
q  e.  Q.  /\  r  e.  Q. )
)  /\  q  <Q  r )  /\  ( ( d  e.  Q.  /\  u  e.  Q. )  /\  ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A )  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) ) ) )  -> 
( u  .Q  q
)  <Q  ( d  .Q  r ) )
9 simprl 498 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  (
q  e.  Q.  /\  r  e.  Q. )
)  /\  q  <Q  r )  /\  ( ( d  e.  Q.  /\  u  e.  Q. )  /\  ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A )  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) ) ) )  -> 
( d  e.  Q.  /\  u  e.  Q. )
)
10 mulclnq 6838 . . . . . . . . 9  |-  ( ( d  e.  Q.  /\  u  e.  Q. )  ->  ( d  .Q  u
)  e.  Q. )
119, 10syl 14 . . . . . . . 8  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  (
q  e.  Q.  /\  r  e.  Q. )
)  /\  q  <Q  r )  /\  ( ( d  e.  Q.  /\  u  e.  Q. )  /\  ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A )  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) ) ) )  -> 
( d  .Q  u
)  e.  Q. )
12 appdivnq 7025 . . . . . . . 8  |-  ( ( ( u  .Q  q
)  <Q  ( d  .Q  r )  /\  (
d  .Q  u )  e.  Q. )  ->  E. e  e.  Q.  ( ( u  .Q  q )  <Q  (
e  .Q  ( d  .Q  u ) )  /\  ( e  .Q  ( d  .Q  u
) )  <Q  (
d  .Q  r ) ) )
138, 11, 12syl2anc 403 . . . . . . 7  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  (
q  e.  Q.  /\  r  e.  Q. )
)  /\  q  <Q  r )  /\  ( ( d  e.  Q.  /\  u  e.  Q. )  /\  ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A )  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) ) ) )  ->  E. e  e.  Q.  ( ( u  .Q  q )  <Q  (
e  .Q  ( d  .Q  u ) )  /\  ( e  .Q  ( d  .Q  u
) )  <Q  (
d  .Q  r ) ) )
14 simprrr 507 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )
)  /\  q  <Q  r )  /\  ( ( d  e.  Q.  /\  u  e.  Q. )  /\  ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A )  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) ) ) )  /\  ( e  e.  Q.  /\  ( ( u  .Q  q )  <Q  (
e  .Q  ( d  .Q  u ) )  /\  ( e  .Q  ( d  .Q  u
) )  <Q  (
d  .Q  r ) ) ) )  -> 
( e  .Q  (
d  .Q  u ) )  <Q  ( d  .Q  r ) )
1511adantr 270 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )
)  /\  q  <Q  r )  /\  ( ( d  e.  Q.  /\  u  e.  Q. )  /\  ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A )  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) ) ) )  /\  ( e  e.  Q.  /\  ( ( u  .Q  q )  <Q  (
e  .Q  ( d  .Q  u ) )  /\  ( e  .Q  ( d  .Q  u
) )  <Q  (
d  .Q  r ) ) ) )  -> 
( d  .Q  u
)  e.  Q. )
16 appdivnq 7025 . . . . . . . . 9  |-  ( ( ( e  .Q  (
d  .Q  u ) )  <Q  ( d  .Q  r )  /\  (
d  .Q  u )  e.  Q. )  ->  E. t  e.  Q.  ( ( e  .Q  ( d  .Q  u
) )  <Q  (
t  .Q  ( d  .Q  u ) )  /\  ( t  .Q  ( d  .Q  u
) )  <Q  (
d  .Q  r ) ) )
1714, 15, 16syl2anc 403 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )
)  /\  q  <Q  r )  /\  ( ( d  e.  Q.  /\  u  e.  Q. )  /\  ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A )  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) ) ) )  /\  ( e  e.  Q.  /\  ( ( u  .Q  q )  <Q  (
e  .Q  ( d  .Q  u ) )  /\  ( e  .Q  ( d  .Q  u
) )  <Q  (
d  .Q  r ) ) ) )  ->  E. t  e.  Q.  ( ( e  .Q  ( d  .Q  u
) )  <Q  (
t  .Q  ( d  .Q  u ) )  /\  ( t  .Q  ( d  .Q  u
) )  <Q  (
d  .Q  r ) ) )
18 simplll 500 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  (
q  e.  Q.  /\  r  e.  Q. )
)  /\  q  <Q  r )  /\  ( ( d  e.  Q.  /\  u  e.  Q. )  /\  ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A )  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) ) ) )  -> 
( A  e.  P.  /\  B  e.  P. )
)
1918ad2antrr 472 . . . . . . . . 9  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )
)  /\  q  <Q  r )  /\  ( ( d  e.  Q.  /\  u  e.  Q. )  /\  ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A )  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) ) ) )  /\  ( e  e.  Q.  /\  ( ( u  .Q  q )  <Q  (
e  .Q  ( d  .Q  u ) )  /\  ( e  .Q  ( d  .Q  u
) )  <Q  (
d  .Q  r ) ) ) )  /\  ( t  e.  Q.  /\  ( ( e  .Q  ( d  .Q  u
) )  <Q  (
t  .Q  ( d  .Q  u ) )  /\  ( t  .Q  ( d  .Q  u
) )  <Q  (
d  .Q  r ) ) ) )  -> 
( A  e.  P.  /\  B  e.  P. )
)
20 simprl 498 . . . . . . . . . 10  |-  ( ( e  e.  Q.  /\  ( ( u  .Q  q )  <Q  (
e  .Q  ( d  .Q  u ) )  /\  ( e  .Q  ( d  .Q  u
) )  <Q  (
d  .Q  r ) ) )  ->  (
u  .Q  q ) 
<Q  ( e  .Q  (
d  .Q  u ) ) )
2120ad2antlr 473 . . . . . . . . 9  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )
)  /\  q  <Q  r )  /\  ( ( d  e.  Q.  /\  u  e.  Q. )  /\  ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A )  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) ) ) )  /\  ( e  e.  Q.  /\  ( ( u  .Q  q )  <Q  (
e  .Q  ( d  .Q  u ) )  /\  ( e  .Q  ( d  .Q  u
) )  <Q  (
d  .Q  r ) ) ) )  /\  ( t  e.  Q.  /\  ( ( e  .Q  ( d  .Q  u
) )  <Q  (
t  .Q  ( d  .Q  u ) )  /\  ( t  .Q  ( d  .Q  u
) )  <Q  (
d  .Q  r ) ) ) )  -> 
( u  .Q  q
)  <Q  ( e  .Q  ( d  .Q  u
) ) )
22 simprrl 506 . . . . . . . . 9  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )
)  /\  q  <Q  r )  /\  ( ( d  e.  Q.  /\  u  e.  Q. )  /\  ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A )  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) ) ) )  /\  ( e  e.  Q.  /\  ( ( u  .Q  q )  <Q  (
e  .Q  ( d  .Q  u ) )  /\  ( e  .Q  ( d  .Q  u
) )  <Q  (
d  .Q  r ) ) ) )  /\  ( t  e.  Q.  /\  ( ( e  .Q  ( d  .Q  u
) )  <Q  (
t  .Q  ( d  .Q  u ) )  /\  ( t  .Q  ( d  .Q  u
) )  <Q  (
d  .Q  r ) ) ) )  -> 
( e  .Q  (
d  .Q  u ) )  <Q  ( t  .Q  ( d  .Q  u
) ) )
23 simprrr 507 . . . . . . . . 9  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )
)  /\  q  <Q  r )  /\  ( ( d  e.  Q.  /\  u  e.  Q. )  /\  ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A )  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) ) ) )  /\  ( e  e.  Q.  /\  ( ( u  .Q  q )  <Q  (
e  .Q  ( d  .Q  u ) )  /\  ( e  .Q  ( d  .Q  u
) )  <Q  (
d  .Q  r ) ) ) )  /\  ( t  e.  Q.  /\  ( ( e  .Q  ( d  .Q  u
) )  <Q  (
t  .Q  ( d  .Q  u ) )  /\  ( t  .Q  ( d  .Q  u
) )  <Q  (
d  .Q  r ) ) ) )  -> 
( t  .Q  (
d  .Q  u ) )  <Q  ( d  .Q  r ) )
24 simpllr 501 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  (
q  e.  Q.  /\  r  e.  Q. )
)  /\  q  <Q  r )  /\  ( ( d  e.  Q.  /\  u  e.  Q. )  /\  ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A )  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) ) ) )  -> 
( q  e.  Q.  /\  r  e.  Q. )
)
2524ad2antrr 472 . . . . . . . . 9  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )
)  /\  q  <Q  r )  /\  ( ( d  e.  Q.  /\  u  e.  Q. )  /\  ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A )  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) ) ) )  /\  ( e  e.  Q.  /\  ( ( u  .Q  q )  <Q  (
e  .Q  ( d  .Q  u ) )  /\  ( e  .Q  ( d  .Q  u
) )  <Q  (
d  .Q  r ) ) ) )  /\  ( t  e.  Q.  /\  ( ( e  .Q  ( d  .Q  u
) )  <Q  (
t  .Q  ( d  .Q  u ) )  /\  ( t  .Q  ( d  .Q  u
) )  <Q  (
d  .Q  r ) ) ) )  -> 
( q  e.  Q.  /\  r  e.  Q. )
)
269ad2antrr 472 . . . . . . . . 9  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )
)  /\  q  <Q  r )  /\  ( ( d  e.  Q.  /\  u  e.  Q. )  /\  ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A )  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) ) ) )  /\  ( e  e.  Q.  /\  ( ( u  .Q  q )  <Q  (
e  .Q  ( d  .Q  u ) )  /\  ( e  .Q  ( d  .Q  u
) )  <Q  (
d  .Q  r ) ) ) )  /\  ( t  e.  Q.  /\  ( ( e  .Q  ( d  .Q  u
) )  <Q  (
t  .Q  ( d  .Q  u ) )  /\  ( t  .Q  ( d  .Q  u
) )  <Q  (
d  .Q  r ) ) ) )  -> 
( d  e.  Q.  /\  u  e.  Q. )
)
27 3simpa 936 . . . . . . . . . . 11  |-  ( ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A
)  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) )  ->  ( d  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )
2827ad2antll 475 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  (
q  e.  Q.  /\  r  e.  Q. )
)  /\  q  <Q  r )  /\  ( ( d  e.  Q.  /\  u  e.  Q. )  /\  ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A )  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) ) ) )  -> 
( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A ) ) )
2928ad2antrr 472 . . . . . . . . 9  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )
)  /\  q  <Q  r )  /\  ( ( d  e.  Q.  /\  u  e.  Q. )  /\  ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A )  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) ) ) )  /\  ( e  e.  Q.  /\  ( ( u  .Q  q )  <Q  (
e  .Q  ( d  .Q  u ) )  /\  ( e  .Q  ( d  .Q  u
) )  <Q  (
d  .Q  r ) ) ) )  /\  ( t  e.  Q.  /\  ( ( e  .Q  ( d  .Q  u
) )  <Q  (
t  .Q  ( d  .Q  u ) )  /\  ( t  .Q  ( d  .Q  u
) )  <Q  (
d  .Q  r ) ) ) )  -> 
( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A ) ) )
30 simplrl 502 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )
)  /\  q  <Q  r )  /\  ( ( d  e.  Q.  /\  u  e.  Q. )  /\  ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A )  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) ) ) )  /\  ( e  e.  Q.  /\  ( ( u  .Q  q )  <Q  (
e  .Q  ( d  .Q  u ) )  /\  ( e  .Q  ( d  .Q  u
) )  <Q  (
d  .Q  r ) ) ) )  /\  ( t  e.  Q.  /\  ( ( e  .Q  ( d  .Q  u
) )  <Q  (
t  .Q  ( d  .Q  u ) )  /\  ( t  .Q  ( d  .Q  u
) )  <Q  (
d  .Q  r ) ) ) )  -> 
e  e.  Q. )
31 simprl 498 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )
)  /\  q  <Q  r )  /\  ( ( d  e.  Q.  /\  u  e.  Q. )  /\  ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A )  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) ) ) )  /\  ( e  e.  Q.  /\  ( ( u  .Q  q )  <Q  (
e  .Q  ( d  .Q  u ) )  /\  ( e  .Q  ( d  .Q  u
) )  <Q  (
d  .Q  r ) ) ) )  /\  ( t  e.  Q.  /\  ( ( e  .Q  ( d  .Q  u
) )  <Q  (
t  .Q  ( d  .Q  u ) )  /\  ( t  .Q  ( d  .Q  u
) )  <Q  (
d  .Q  r ) ) ) )  -> 
t  e.  Q. )
3230, 31jca 300 . . . . . . . . 9  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )
)  /\  q  <Q  r )  /\  ( ( d  e.  Q.  /\  u  e.  Q. )  /\  ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A )  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) ) ) )  /\  ( e  e.  Q.  /\  ( ( u  .Q  q )  <Q  (
e  .Q  ( d  .Q  u ) )  /\  ( e  .Q  ( d  .Q  u
) )  <Q  (
d  .Q  r ) ) ) )  /\  ( t  e.  Q.  /\  ( ( e  .Q  ( d  .Q  u
) )  <Q  (
t  .Q  ( d  .Q  u ) )  /\  ( t  .Q  ( d  .Q  u
) )  <Q  (
d  .Q  r ) ) ) )  -> 
( e  e.  Q.  /\  t  e.  Q. )
)
3319, 21, 22, 23, 25, 26, 29, 32mullocprlem 7032 . . . . . . . 8  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )
)  /\  q  <Q  r )  /\  ( ( d  e.  Q.  /\  u  e.  Q. )  /\  ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A )  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) ) ) )  /\  ( e  e.  Q.  /\  ( ( u  .Q  q )  <Q  (
e  .Q  ( d  .Q  u ) )  /\  ( e  .Q  ( d  .Q  u
) )  <Q  (
d  .Q  r ) ) ) )  /\  ( t  e.  Q.  /\  ( ( e  .Q  ( d  .Q  u
) )  <Q  (
t  .Q  ( d  .Q  u ) )  /\  ( t  .Q  ( d  .Q  u
) )  <Q  (
d  .Q  r ) ) ) )  -> 
( q  e.  ( 1st `  ( A  .P.  B ) )  \/  r  e.  ( 2nd `  ( A  .P.  B ) ) ) )
3417, 33rexlimddv 2487 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )
)  /\  q  <Q  r )  /\  ( ( d  e.  Q.  /\  u  e.  Q. )  /\  ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A )  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) ) ) )  /\  ( e  e.  Q.  /\  ( ( u  .Q  q )  <Q  (
e  .Q  ( d  .Q  u ) )  /\  ( e  .Q  ( d  .Q  u
) )  <Q  (
d  .Q  r ) ) ) )  -> 
( q  e.  ( 1st `  ( A  .P.  B ) )  \/  r  e.  ( 2nd `  ( A  .P.  B ) ) ) )
3513, 34rexlimddv 2487 . . . . . 6  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  (
q  e.  Q.  /\  r  e.  Q. )
)  /\  q  <Q  r )  /\  ( ( d  e.  Q.  /\  u  e.  Q. )  /\  ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A )  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) ) ) )  -> 
( q  e.  ( 1st `  ( A  .P.  B ) )  \/  r  e.  ( 2nd `  ( A  .P.  B ) ) ) )
3635ex 113 . . . . 5  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  (
q  e.  Q.  /\  r  e.  Q. )
)  /\  q  <Q  r )  ->  ( (
( d  e.  Q.  /\  u  e.  Q. )  /\  ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A )  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) ) )  ->  (
q  e.  ( 1st `  ( A  .P.  B
) )  \/  r  e.  ( 2nd `  ( A  .P.  B ) ) ) ) )
3736exlimdvv 1820 . . . 4  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  (
q  e.  Q.  /\  r  e.  Q. )
)  /\  q  <Q  r )  ->  ( E. d E. u ( ( d  e.  Q.  /\  u  e.  Q. )  /\  ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A )  /\  ( u  .Q  q )  <Q  (
d  .Q  r ) ) )  ->  (
q  e.  ( 1st `  ( A  .P.  B
) )  \/  r  e.  ( 2nd `  ( A  .P.  B ) ) ) ) )
387, 37mpd 13 . . 3  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  (
q  e.  Q.  /\  r  e.  Q. )
)  /\  q  <Q  r )  ->  ( q  e.  ( 1st `  ( A  .P.  B ) )  \/  r  e.  ( 2nd `  ( A  .P.  B ) ) ) )
3938ex 113 . 2  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )
)  ->  ( q  <Q  r  ->  ( q  e.  ( 1st `  ( A  .P.  B ) )  \/  r  e.  ( 2nd `  ( A  .P.  B ) ) ) ) )
4039ralrimivva 2449 1  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  A. q  e.  Q.  A. r  e.  Q.  (
q  <Q  r  ->  (
q  e.  ( 1st `  ( A  .P.  B
) )  \/  r  e.  ( 2nd `  ( A  .P.  B ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    \/ wo 662    /\ w3a 920   E.wex 1422    e. wcel 1434   A.wral 2353   E.wrex 2354   <.cop 3425   class class class wbr 3811   ` cfv 4969  (class class class)co 5591   1stc1st 5844   2ndc2nd 5845   Q.cnq 6742    .Q cmq 6745    <Q cltq 6747   P.cnp 6753    .P. cmp 6756
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-coll 3919  ax-sep 3922  ax-nul 3930  ax-pow 3974  ax-pr 4000  ax-un 4224  ax-setind 4316  ax-iinf 4366
This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-ral 2358  df-rex 2359  df-reu 2360  df-rab 2362  df-v 2614  df-sbc 2827  df-csb 2920  df-dif 2986  df-un 2988  df-in 2990  df-ss 2997  df-nul 3270  df-pw 3408  df-sn 3428  df-pr 3429  df-op 3431  df-uni 3628  df-int 3663  df-iun 3706  df-br 3812  df-opab 3866  df-mpt 3867  df-tr 3902  df-eprel 4080  df-id 4084  df-po 4087  df-iso 4088  df-iord 4157  df-on 4159  df-suc 4162  df-iom 4369  df-xp 4407  df-rel 4408  df-cnv 4409  df-co 4410  df-dm 4411  df-rn 4412  df-res 4413  df-ima 4414  df-iota 4934  df-fun 4971  df-fn 4972  df-f 4973  df-f1 4974  df-fo 4975  df-f1o 4976  df-fv 4977  df-ov 5594  df-oprab 5595  df-mpt2 5596  df-1st 5846  df-2nd 5847  df-recs 6002  df-irdg 6067  df-1o 6113  df-2o 6114  df-oadd 6117  df-omul 6118  df-er 6222  df-ec 6224  df-qs 6228  df-ni 6766  df-pli 6767  df-mi 6768  df-lti 6769  df-plpq 6806  df-mpq 6807  df-enq 6809  df-nqqs 6810  df-plqqs 6811  df-mqqs 6812  df-1nqqs 6813  df-rq 6814  df-ltnqqs 6815  df-enq0 6886  df-nq0 6887  df-0nq0 6888  df-plq0 6889  df-mq0 6890  df-inp 6928  df-imp 6931
This theorem is referenced by:  mulclpr  7034
  Copyright terms: Public domain W3C validator