ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prltlu Unicode version

Theorem prltlu 7025
Description: An element of a lower cut is less than an element of the corresponding upper cut. (Contributed by Jim Kingdon, 15-Oct-2019.)
Assertion
Ref Expression
prltlu  |-  ( (
<. L ,  U >.  e. 
P.  /\  B  e.  L  /\  C  e.  U
)  ->  B  <Q  C )

Proof of Theorem prltlu
Dummy variables  q  r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp3 945 . . 3  |-  ( (
<. L ,  U >.  e. 
P.  /\  B  e.  L  /\  C  e.  U
)  ->  C  e.  U )
2 eleq1 2150 . . . . . . 7  |-  ( q  =  C  ->  (
q  e.  L  <->  C  e.  L ) )
3 eleq1 2150 . . . . . . 7  |-  ( q  =  C  ->  (
q  e.  U  <->  C  e.  U ) )
42, 3anbi12d 457 . . . . . 6  |-  ( q  =  C  ->  (
( q  e.  L  /\  q  e.  U
)  <->  ( C  e.  L  /\  C  e.  U ) ) )
54notbid 627 . . . . 5  |-  ( q  =  C  ->  ( -.  ( q  e.  L  /\  q  e.  U
)  <->  -.  ( C  e.  L  /\  C  e.  U ) ) )
6 elinp 7012 . . . . . . 7  |-  ( <. L ,  U >.  e. 
P. 
<->  ( ( ( L 
C_  Q.  /\  U  C_  Q. )  /\  ( E. q  e.  Q.  q  e.  L  /\  E. r  e.  Q.  r  e.  U ) )  /\  ( ( A. q  e.  Q.  ( q  e.  L  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  L
) )  /\  A. r  e.  Q.  (
r  e.  U  <->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  U ) ) )  /\  A. q  e. 
Q.  -.  ( q  e.  L  /\  q  e.  U )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  L  \/  r  e.  U ) ) ) ) )
7 simpr2 950 . . . . . . 7  |-  ( ( ( ( L  C_  Q.  /\  U  C_  Q. )  /\  ( E. q  e.  Q.  q  e.  L  /\  E. r  e.  Q.  r  e.  U )
)  /\  ( ( A. q  e.  Q.  ( q  e.  L  <->  E. r  e.  Q.  (
q  <Q  r  /\  r  e.  L ) )  /\  A. r  e.  Q.  (
r  e.  U  <->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  U ) ) )  /\  A. q  e. 
Q.  -.  ( q  e.  L  /\  q  e.  U )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  L  \/  r  e.  U ) ) ) )  ->  A. q  e.  Q.  -.  ( q  e.  L  /\  q  e.  U ) )
86, 7sylbi 119 . . . . . 6  |-  ( <. L ,  U >.  e. 
P.  ->  A. q  e.  Q.  -.  ( q  e.  L  /\  q  e.  U
) )
983ad2ant1 964 . . . . 5  |-  ( (
<. L ,  U >.  e. 
P.  /\  B  e.  L  /\  C  e.  U
)  ->  A. q  e.  Q.  -.  ( q  e.  L  /\  q  e.  U ) )
10 elprnqu 7020 . . . . . 6  |-  ( (
<. L ,  U >.  e. 
P.  /\  C  e.  U )  ->  C  e.  Q. )
11103adant2 962 . . . . 5  |-  ( (
<. L ,  U >.  e. 
P.  /\  B  e.  L  /\  C  e.  U
)  ->  C  e.  Q. )
125, 9, 11rspcdva 2727 . . . 4  |-  ( (
<. L ,  U >.  e. 
P.  /\  B  e.  L  /\  C  e.  U
)  ->  -.  ( C  e.  L  /\  C  e.  U )
)
13 ancom 262 . . . . . 6  |-  ( ( C  e.  L  /\  C  e.  U )  <->  ( C  e.  U  /\  C  e.  L )
)
1413notbii 629 . . . . 5  |-  ( -.  ( C  e.  L  /\  C  e.  U
)  <->  -.  ( C  e.  U  /\  C  e.  L ) )
15 imnan 659 . . . . 5  |-  ( ( C  e.  U  ->  -.  C  e.  L
)  <->  -.  ( C  e.  U  /\  C  e.  L ) )
1614, 15bitr4i 185 . . . 4  |-  ( -.  ( C  e.  L  /\  C  e.  U
)  <->  ( C  e.  U  ->  -.  C  e.  L ) )
1712, 16sylib 120 . . 3  |-  ( (
<. L ,  U >.  e. 
P.  /\  B  e.  L  /\  C  e.  U
)  ->  ( C  e.  U  ->  -.  C  e.  L ) )
181, 17mpd 13 . 2  |-  ( (
<. L ,  U >.  e. 
P.  /\  B  e.  L  /\  C  e.  U
)  ->  -.  C  e.  L )
19 3simpa 940 . . 3  |-  ( (
<. L ,  U >.  e. 
P.  /\  B  e.  L  /\  C  e.  U
)  ->  ( <. L ,  U >.  e.  P.  /\  B  e.  L ) )
20 prubl 7024 . . 3  |-  ( ( ( <. L ,  U >.  e.  P.  /\  B  e.  L )  /\  C  e.  Q. )  ->  ( -.  C  e.  L  ->  B  <Q  C )
)
2119, 11, 20syl2anc 403 . 2  |-  ( (
<. L ,  U >.  e. 
P.  /\  B  e.  L  /\  C  e.  U
)  ->  ( -.  C  e.  L  ->  B 
<Q  C ) )
2218, 21mpd 13 1  |-  ( (
<. L ,  U >.  e. 
P.  /\  B  e.  L  /\  C  e.  U
)  ->  B  <Q  C )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    <-> wb 103    \/ wo 664    /\ w3a 924    = wceq 1289    e. wcel 1438   A.wral 2359   E.wrex 2360    C_ wss 2997   <.cop 3444   class class class wbr 3837   Q.cnq 6818    <Q cltq 6823   P.cnp 6829
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-coll 3946  ax-sep 3949  ax-nul 3957  ax-pow 4001  ax-pr 4027  ax-un 4251  ax-setind 4343  ax-iinf 4393
This theorem depends on definitions:  df-bi 115  df-dc 781  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-ral 2364  df-rex 2365  df-reu 2366  df-rab 2368  df-v 2621  df-sbc 2839  df-csb 2932  df-dif 2999  df-un 3001  df-in 3003  df-ss 3010  df-nul 3285  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-int 3684  df-iun 3727  df-br 3838  df-opab 3892  df-mpt 3893  df-tr 3929  df-eprel 4107  df-id 4111  df-po 4114  df-iso 4115  df-iord 4184  df-on 4186  df-suc 4189  df-iom 4396  df-xp 4434  df-rel 4435  df-cnv 4436  df-co 4437  df-dm 4438  df-rn 4439  df-res 4440  df-ima 4441  df-iota 4967  df-fun 5004  df-fn 5005  df-f 5006  df-f1 5007  df-fo 5008  df-f1o 5009  df-fv 5010  df-ov 5637  df-oprab 5638  df-mpt2 5639  df-1st 5893  df-2nd 5894  df-recs 6052  df-irdg 6117  df-oadd 6167  df-omul 6168  df-er 6272  df-ec 6274  df-qs 6278  df-ni 6842  df-mi 6844  df-lti 6845  df-enq 6885  df-nqqs 6886  df-ltnqqs 6891  df-inp 7004
This theorem is referenced by:  genpdisj  7061  prmuloc  7104  ltprordil  7127  ltpopr  7133  ltexprlemopu  7141  ltexprlemdisj  7144  ltexprlemfl  7147  ltexprlemfu  7149  ltexprlemru  7150  recexprlemdisj  7168  recexprlemss1l  7173  recexprlemss1u  7174
  Copyright terms: Public domain W3C validator