ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prltlu Unicode version

Theorem prltlu 7402
Description: An element of a lower cut is less than an element of the corresponding upper cut. (Contributed by Jim Kingdon, 15-Oct-2019.)
Assertion
Ref Expression
prltlu  |-  ( (
<. L ,  U >.  e. 
P.  /\  B  e.  L  /\  C  e.  U
)  ->  B  <Q  C )

Proof of Theorem prltlu
Dummy variables  q  r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp3 984 . . 3  |-  ( (
<. L ,  U >.  e. 
P.  /\  B  e.  L  /\  C  e.  U
)  ->  C  e.  U )
2 eleq1 2220 . . . . . . 7  |-  ( q  =  C  ->  (
q  e.  L  <->  C  e.  L ) )
3 eleq1 2220 . . . . . . 7  |-  ( q  =  C  ->  (
q  e.  U  <->  C  e.  U ) )
42, 3anbi12d 465 . . . . . 6  |-  ( q  =  C  ->  (
( q  e.  L  /\  q  e.  U
)  <->  ( C  e.  L  /\  C  e.  U ) ) )
54notbid 657 . . . . 5  |-  ( q  =  C  ->  ( -.  ( q  e.  L  /\  q  e.  U
)  <->  -.  ( C  e.  L  /\  C  e.  U ) ) )
6 elinp 7389 . . . . . . 7  |-  ( <. L ,  U >.  e. 
P. 
<->  ( ( ( L 
C_  Q.  /\  U  C_  Q. )  /\  ( E. q  e.  Q.  q  e.  L  /\  E. r  e.  Q.  r  e.  U ) )  /\  ( ( A. q  e.  Q.  ( q  e.  L  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  L
) )  /\  A. r  e.  Q.  (
r  e.  U  <->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  U ) ) )  /\  A. q  e. 
Q.  -.  ( q  e.  L  /\  q  e.  U )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  L  \/  r  e.  U ) ) ) ) )
7 simpr2 989 . . . . . . 7  |-  ( ( ( ( L  C_  Q.  /\  U  C_  Q. )  /\  ( E. q  e.  Q.  q  e.  L  /\  E. r  e.  Q.  r  e.  U )
)  /\  ( ( A. q  e.  Q.  ( q  e.  L  <->  E. r  e.  Q.  (
q  <Q  r  /\  r  e.  L ) )  /\  A. r  e.  Q.  (
r  e.  U  <->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  U ) ) )  /\  A. q  e. 
Q.  -.  ( q  e.  L  /\  q  e.  U )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  L  \/  r  e.  U ) ) ) )  ->  A. q  e.  Q.  -.  ( q  e.  L  /\  q  e.  U ) )
86, 7sylbi 120 . . . . . 6  |-  ( <. L ,  U >.  e. 
P.  ->  A. q  e.  Q.  -.  ( q  e.  L  /\  q  e.  U
) )
983ad2ant1 1003 . . . . 5  |-  ( (
<. L ,  U >.  e. 
P.  /\  B  e.  L  /\  C  e.  U
)  ->  A. q  e.  Q.  -.  ( q  e.  L  /\  q  e.  U ) )
10 elprnqu 7397 . . . . . 6  |-  ( (
<. L ,  U >.  e. 
P.  /\  C  e.  U )  ->  C  e.  Q. )
11103adant2 1001 . . . . 5  |-  ( (
<. L ,  U >.  e. 
P.  /\  B  e.  L  /\  C  e.  U
)  ->  C  e.  Q. )
125, 9, 11rspcdva 2821 . . . 4  |-  ( (
<. L ,  U >.  e. 
P.  /\  B  e.  L  /\  C  e.  U
)  ->  -.  ( C  e.  L  /\  C  e.  U )
)
13 ancom 264 . . . . . 6  |-  ( ( C  e.  L  /\  C  e.  U )  <->  ( C  e.  U  /\  C  e.  L )
)
1413notbii 658 . . . . 5  |-  ( -.  ( C  e.  L  /\  C  e.  U
)  <->  -.  ( C  e.  U  /\  C  e.  L ) )
15 imnan 680 . . . . 5  |-  ( ( C  e.  U  ->  -.  C  e.  L
)  <->  -.  ( C  e.  U  /\  C  e.  L ) )
1614, 15bitr4i 186 . . . 4  |-  ( -.  ( C  e.  L  /\  C  e.  U
)  <->  ( C  e.  U  ->  -.  C  e.  L ) )
1712, 16sylib 121 . . 3  |-  ( (
<. L ,  U >.  e. 
P.  /\  B  e.  L  /\  C  e.  U
)  ->  ( C  e.  U  ->  -.  C  e.  L ) )
181, 17mpd 13 . 2  |-  ( (
<. L ,  U >.  e. 
P.  /\  B  e.  L  /\  C  e.  U
)  ->  -.  C  e.  L )
19 3simpa 979 . . 3  |-  ( (
<. L ,  U >.  e. 
P.  /\  B  e.  L  /\  C  e.  U
)  ->  ( <. L ,  U >.  e.  P.  /\  B  e.  L ) )
20 prubl 7401 . . 3  |-  ( ( ( <. L ,  U >.  e.  P.  /\  B  e.  L )  /\  C  e.  Q. )  ->  ( -.  C  e.  L  ->  B  <Q  C )
)
2119, 11, 20syl2anc 409 . 2  |-  ( (
<. L ,  U >.  e. 
P.  /\  B  e.  L  /\  C  e.  U
)  ->  ( -.  C  e.  L  ->  B 
<Q  C ) )
2218, 21mpd 13 1  |-  ( (
<. L ,  U >.  e. 
P.  /\  B  e.  L  /\  C  e.  U
)  ->  B  <Q  C )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698    /\ w3a 963    = wceq 1335    e. wcel 2128   A.wral 2435   E.wrex 2436    C_ wss 3102   <.cop 3563   class class class wbr 3965   Q.cnq 7195    <Q cltq 7200   P.cnp 7206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4079  ax-sep 4082  ax-nul 4090  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-setind 4495  ax-iinf 4546
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-ral 2440  df-rex 2441  df-reu 2442  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-tr 4063  df-eprel 4249  df-id 4253  df-po 4256  df-iso 4257  df-iord 4326  df-on 4328  df-suc 4331  df-iom 4549  df-xp 4591  df-rel 4592  df-cnv 4593  df-co 4594  df-dm 4595  df-rn 4596  df-res 4597  df-ima 4598  df-iota 5134  df-fun 5171  df-fn 5172  df-f 5173  df-f1 5174  df-fo 5175  df-f1o 5176  df-fv 5177  df-ov 5824  df-oprab 5825  df-mpo 5826  df-1st 6085  df-2nd 6086  df-recs 6249  df-irdg 6314  df-oadd 6364  df-omul 6365  df-er 6477  df-ec 6479  df-qs 6483  df-ni 7219  df-mi 7221  df-lti 7222  df-enq 7262  df-nqqs 7263  df-ltnqqs 7268  df-inp 7381
This theorem is referenced by:  genpdisj  7438  prmuloc  7481  ltprordil  7504  ltpopr  7510  ltexprlemopu  7518  ltexprlemdisj  7521  ltexprlemfl  7524  ltexprlemfu  7526  ltexprlemru  7527  recexprlemdisj  7545  recexprlemss1l  7550  recexprlemss1u  7551
  Copyright terms: Public domain W3C validator