| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prltlu | Unicode version | ||
| Description: An element of a lower cut is less than an element of the corresponding upper cut. (Contributed by Jim Kingdon, 15-Oct-2019.) |
| Ref | Expression |
|---|---|
| prltlu |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 1002 |
. . 3
| |
| 2 | eleq1 2268 |
. . . . . . 7
| |
| 3 | eleq1 2268 |
. . . . . . 7
| |
| 4 | 2, 3 | anbi12d 473 |
. . . . . 6
|
| 5 | 4 | notbid 669 |
. . . . 5
|
| 6 | elinp 7589 |
. . . . . . 7
| |
| 7 | simpr2 1007 |
. . . . . . 7
| |
| 8 | 6, 7 | sylbi 121 |
. . . . . 6
|
| 9 | 8 | 3ad2ant1 1021 |
. . . . 5
|
| 10 | elprnqu 7597 |
. . . . . 6
| |
| 11 | 10 | 3adant2 1019 |
. . . . 5
|
| 12 | 5, 9, 11 | rspcdva 2882 |
. . . 4
|
| 13 | ancom 266 |
. . . . . 6
| |
| 14 | 13 | notbii 670 |
. . . . 5
|
| 15 | imnan 692 |
. . . . 5
| |
| 16 | 14, 15 | bitr4i 187 |
. . . 4
|
| 17 | 12, 16 | sylib 122 |
. . 3
|
| 18 | 1, 17 | mpd 13 |
. 2
|
| 19 | 3simpa 997 |
. . 3
| |
| 20 | prubl 7601 |
. . 3
| |
| 21 | 19, 11, 20 | syl2anc 411 |
. 2
|
| 22 | 18, 21 | mpd 13 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4160 ax-sep 4163 ax-nul 4171 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 ax-iinf 4637 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4046 df-opab 4107 df-mpt 4108 df-tr 4144 df-eprel 4337 df-id 4341 df-po 4344 df-iso 4345 df-iord 4414 df-on 4416 df-suc 4419 df-iom 4640 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-iota 5233 df-fun 5274 df-fn 5275 df-f 5276 df-f1 5277 df-fo 5278 df-f1o 5279 df-fv 5280 df-ov 5949 df-oprab 5950 df-mpo 5951 df-1st 6228 df-2nd 6229 df-recs 6393 df-irdg 6458 df-oadd 6508 df-omul 6509 df-er 6622 df-ec 6624 df-qs 6628 df-ni 7419 df-mi 7421 df-lti 7422 df-enq 7462 df-nqqs 7463 df-ltnqqs 7468 df-inp 7581 |
| This theorem is referenced by: genpdisj 7638 prmuloc 7681 ltprordil 7704 ltpopr 7710 ltexprlemopu 7718 ltexprlemdisj 7721 ltexprlemfl 7724 ltexprlemfu 7726 ltexprlemru 7727 recexprlemdisj 7745 recexprlemss1l 7750 recexprlemss1u 7751 |
| Copyright terms: Public domain | W3C validator |