ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prltlu Unicode version

Theorem prltlu 7635
Description: An element of a lower cut is less than an element of the corresponding upper cut. (Contributed by Jim Kingdon, 15-Oct-2019.)
Assertion
Ref Expression
prltlu  |-  ( (
<. L ,  U >.  e. 
P.  /\  B  e.  L  /\  C  e.  U
)  ->  B  <Q  C )

Proof of Theorem prltlu
Dummy variables  q  r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp3 1002 . . 3  |-  ( (
<. L ,  U >.  e. 
P.  /\  B  e.  L  /\  C  e.  U
)  ->  C  e.  U )
2 eleq1 2270 . . . . . . 7  |-  ( q  =  C  ->  (
q  e.  L  <->  C  e.  L ) )
3 eleq1 2270 . . . . . . 7  |-  ( q  =  C  ->  (
q  e.  U  <->  C  e.  U ) )
42, 3anbi12d 473 . . . . . 6  |-  ( q  =  C  ->  (
( q  e.  L  /\  q  e.  U
)  <->  ( C  e.  L  /\  C  e.  U ) ) )
54notbid 669 . . . . 5  |-  ( q  =  C  ->  ( -.  ( q  e.  L  /\  q  e.  U
)  <->  -.  ( C  e.  L  /\  C  e.  U ) ) )
6 elinp 7622 . . . . . . 7  |-  ( <. L ,  U >.  e. 
P. 
<->  ( ( ( L 
C_  Q.  /\  U  C_  Q. )  /\  ( E. q  e.  Q.  q  e.  L  /\  E. r  e.  Q.  r  e.  U ) )  /\  ( ( A. q  e.  Q.  ( q  e.  L  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  L
) )  /\  A. r  e.  Q.  (
r  e.  U  <->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  U ) ) )  /\  A. q  e. 
Q.  -.  ( q  e.  L  /\  q  e.  U )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  L  \/  r  e.  U ) ) ) ) )
7 simpr2 1007 . . . . . . 7  |-  ( ( ( ( L  C_  Q.  /\  U  C_  Q. )  /\  ( E. q  e.  Q.  q  e.  L  /\  E. r  e.  Q.  r  e.  U )
)  /\  ( ( A. q  e.  Q.  ( q  e.  L  <->  E. r  e.  Q.  (
q  <Q  r  /\  r  e.  L ) )  /\  A. r  e.  Q.  (
r  e.  U  <->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  U ) ) )  /\  A. q  e. 
Q.  -.  ( q  e.  L  /\  q  e.  U )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  L  \/  r  e.  U ) ) ) )  ->  A. q  e.  Q.  -.  ( q  e.  L  /\  q  e.  U ) )
86, 7sylbi 121 . . . . . 6  |-  ( <. L ,  U >.  e. 
P.  ->  A. q  e.  Q.  -.  ( q  e.  L  /\  q  e.  U
) )
983ad2ant1 1021 . . . . 5  |-  ( (
<. L ,  U >.  e. 
P.  /\  B  e.  L  /\  C  e.  U
)  ->  A. q  e.  Q.  -.  ( q  e.  L  /\  q  e.  U ) )
10 elprnqu 7630 . . . . . 6  |-  ( (
<. L ,  U >.  e. 
P.  /\  C  e.  U )  ->  C  e.  Q. )
11103adant2 1019 . . . . 5  |-  ( (
<. L ,  U >.  e. 
P.  /\  B  e.  L  /\  C  e.  U
)  ->  C  e.  Q. )
125, 9, 11rspcdva 2889 . . . 4  |-  ( (
<. L ,  U >.  e. 
P.  /\  B  e.  L  /\  C  e.  U
)  ->  -.  ( C  e.  L  /\  C  e.  U )
)
13 ancom 266 . . . . . 6  |-  ( ( C  e.  L  /\  C  e.  U )  <->  ( C  e.  U  /\  C  e.  L )
)
1413notbii 670 . . . . 5  |-  ( -.  ( C  e.  L  /\  C  e.  U
)  <->  -.  ( C  e.  U  /\  C  e.  L ) )
15 imnan 692 . . . . 5  |-  ( ( C  e.  U  ->  -.  C  e.  L
)  <->  -.  ( C  e.  U  /\  C  e.  L ) )
1614, 15bitr4i 187 . . . 4  |-  ( -.  ( C  e.  L  /\  C  e.  U
)  <->  ( C  e.  U  ->  -.  C  e.  L ) )
1712, 16sylib 122 . . 3  |-  ( (
<. L ,  U >.  e. 
P.  /\  B  e.  L  /\  C  e.  U
)  ->  ( C  e.  U  ->  -.  C  e.  L ) )
181, 17mpd 13 . 2  |-  ( (
<. L ,  U >.  e. 
P.  /\  B  e.  L  /\  C  e.  U
)  ->  -.  C  e.  L )
19 3simpa 997 . . 3  |-  ( (
<. L ,  U >.  e. 
P.  /\  B  e.  L  /\  C  e.  U
)  ->  ( <. L ,  U >.  e.  P.  /\  B  e.  L ) )
20 prubl 7634 . . 3  |-  ( ( ( <. L ,  U >.  e.  P.  /\  B  e.  L )  /\  C  e.  Q. )  ->  ( -.  C  e.  L  ->  B  <Q  C )
)
2119, 11, 20syl2anc 411 . 2  |-  ( (
<. L ,  U >.  e. 
P.  /\  B  e.  L  /\  C  e.  U
)  ->  ( -.  C  e.  L  ->  B 
<Q  C ) )
2218, 21mpd 13 1  |-  ( (
<. L ,  U >.  e. 
P.  /\  B  e.  L  /\  C  e.  U
)  ->  B  <Q  C )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710    /\ w3a 981    = wceq 1373    e. wcel 2178   A.wral 2486   E.wrex 2487    C_ wss 3174   <.cop 3646   class class class wbr 4059   Q.cnq 7428    <Q cltq 7433   P.cnp 7439
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-eprel 4354  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-irdg 6479  df-oadd 6529  df-omul 6530  df-er 6643  df-ec 6645  df-qs 6649  df-ni 7452  df-mi 7454  df-lti 7455  df-enq 7495  df-nqqs 7496  df-ltnqqs 7501  df-inp 7614
This theorem is referenced by:  genpdisj  7671  prmuloc  7714  ltprordil  7737  ltpopr  7743  ltexprlemopu  7751  ltexprlemdisj  7754  ltexprlemfl  7757  ltexprlemfu  7759  ltexprlemru  7760  recexprlemdisj  7778  recexprlemss1l  7783  recexprlemss1u  7784
  Copyright terms: Public domain W3C validator