ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prltlu Unicode version

Theorem prltlu 7483
Description: An element of a lower cut is less than an element of the corresponding upper cut. (Contributed by Jim Kingdon, 15-Oct-2019.)
Assertion
Ref Expression
prltlu  |-  ( (
<. L ,  U >.  e. 
P.  /\  B  e.  L  /\  C  e.  U
)  ->  B  <Q  C )

Proof of Theorem prltlu
Dummy variables  q  r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp3 999 . . 3  |-  ( (
<. L ,  U >.  e. 
P.  /\  B  e.  L  /\  C  e.  U
)  ->  C  e.  U )
2 eleq1 2240 . . . . . . 7  |-  ( q  =  C  ->  (
q  e.  L  <->  C  e.  L ) )
3 eleq1 2240 . . . . . . 7  |-  ( q  =  C  ->  (
q  e.  U  <->  C  e.  U ) )
42, 3anbi12d 473 . . . . . 6  |-  ( q  =  C  ->  (
( q  e.  L  /\  q  e.  U
)  <->  ( C  e.  L  /\  C  e.  U ) ) )
54notbid 667 . . . . 5  |-  ( q  =  C  ->  ( -.  ( q  e.  L  /\  q  e.  U
)  <->  -.  ( C  e.  L  /\  C  e.  U ) ) )
6 elinp 7470 . . . . . . 7  |-  ( <. L ,  U >.  e. 
P. 
<->  ( ( ( L 
C_  Q.  /\  U  C_  Q. )  /\  ( E. q  e.  Q.  q  e.  L  /\  E. r  e.  Q.  r  e.  U ) )  /\  ( ( A. q  e.  Q.  ( q  e.  L  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  L
) )  /\  A. r  e.  Q.  (
r  e.  U  <->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  U ) ) )  /\  A. q  e. 
Q.  -.  ( q  e.  L  /\  q  e.  U )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  L  \/  r  e.  U ) ) ) ) )
7 simpr2 1004 . . . . . . 7  |-  ( ( ( ( L  C_  Q.  /\  U  C_  Q. )  /\  ( E. q  e.  Q.  q  e.  L  /\  E. r  e.  Q.  r  e.  U )
)  /\  ( ( A. q  e.  Q.  ( q  e.  L  <->  E. r  e.  Q.  (
q  <Q  r  /\  r  e.  L ) )  /\  A. r  e.  Q.  (
r  e.  U  <->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  U ) ) )  /\  A. q  e. 
Q.  -.  ( q  e.  L  /\  q  e.  U )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  L  \/  r  e.  U ) ) ) )  ->  A. q  e.  Q.  -.  ( q  e.  L  /\  q  e.  U ) )
86, 7sylbi 121 . . . . . 6  |-  ( <. L ,  U >.  e. 
P.  ->  A. q  e.  Q.  -.  ( q  e.  L  /\  q  e.  U
) )
983ad2ant1 1018 . . . . 5  |-  ( (
<. L ,  U >.  e. 
P.  /\  B  e.  L  /\  C  e.  U
)  ->  A. q  e.  Q.  -.  ( q  e.  L  /\  q  e.  U ) )
10 elprnqu 7478 . . . . . 6  |-  ( (
<. L ,  U >.  e. 
P.  /\  C  e.  U )  ->  C  e.  Q. )
11103adant2 1016 . . . . 5  |-  ( (
<. L ,  U >.  e. 
P.  /\  B  e.  L  /\  C  e.  U
)  ->  C  e.  Q. )
125, 9, 11rspcdva 2846 . . . 4  |-  ( (
<. L ,  U >.  e. 
P.  /\  B  e.  L  /\  C  e.  U
)  ->  -.  ( C  e.  L  /\  C  e.  U )
)
13 ancom 266 . . . . . 6  |-  ( ( C  e.  L  /\  C  e.  U )  <->  ( C  e.  U  /\  C  e.  L )
)
1413notbii 668 . . . . 5  |-  ( -.  ( C  e.  L  /\  C  e.  U
)  <->  -.  ( C  e.  U  /\  C  e.  L ) )
15 imnan 690 . . . . 5  |-  ( ( C  e.  U  ->  -.  C  e.  L
)  <->  -.  ( C  e.  U  /\  C  e.  L ) )
1614, 15bitr4i 187 . . . 4  |-  ( -.  ( C  e.  L  /\  C  e.  U
)  <->  ( C  e.  U  ->  -.  C  e.  L ) )
1712, 16sylib 122 . . 3  |-  ( (
<. L ,  U >.  e. 
P.  /\  B  e.  L  /\  C  e.  U
)  ->  ( C  e.  U  ->  -.  C  e.  L ) )
181, 17mpd 13 . 2  |-  ( (
<. L ,  U >.  e. 
P.  /\  B  e.  L  /\  C  e.  U
)  ->  -.  C  e.  L )
19 3simpa 994 . . 3  |-  ( (
<. L ,  U >.  e. 
P.  /\  B  e.  L  /\  C  e.  U
)  ->  ( <. L ,  U >.  e.  P.  /\  B  e.  L ) )
20 prubl 7482 . . 3  |-  ( ( ( <. L ,  U >.  e.  P.  /\  B  e.  L )  /\  C  e.  Q. )  ->  ( -.  C  e.  L  ->  B  <Q  C )
)
2119, 11, 20syl2anc 411 . 2  |-  ( (
<. L ,  U >.  e. 
P.  /\  B  e.  L  /\  C  e.  U
)  ->  ( -.  C  e.  L  ->  B 
<Q  C ) )
2218, 21mpd 13 1  |-  ( (
<. L ,  U >.  e. 
P.  /\  B  e.  L  /\  C  e.  U
)  ->  B  <Q  C )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 708    /\ w3a 978    = wceq 1353    e. wcel 2148   A.wral 2455   E.wrex 2456    C_ wss 3129   <.cop 3595   class class class wbr 4002   Q.cnq 7276    <Q cltq 7281   P.cnp 7287
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4117  ax-sep 4120  ax-nul 4128  ax-pow 4173  ax-pr 4208  ax-un 4432  ax-setind 4535  ax-iinf 4586
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-iun 3888  df-br 4003  df-opab 4064  df-mpt 4065  df-tr 4101  df-eprel 4288  df-id 4292  df-po 4295  df-iso 4296  df-iord 4365  df-on 4367  df-suc 4370  df-iom 4589  df-xp 4631  df-rel 4632  df-cnv 4633  df-co 4634  df-dm 4635  df-rn 4636  df-res 4637  df-ima 4638  df-iota 5177  df-fun 5217  df-fn 5218  df-f 5219  df-f1 5220  df-fo 5221  df-f1o 5222  df-fv 5223  df-ov 5875  df-oprab 5876  df-mpo 5877  df-1st 6138  df-2nd 6139  df-recs 6303  df-irdg 6368  df-oadd 6418  df-omul 6419  df-er 6532  df-ec 6534  df-qs 6538  df-ni 7300  df-mi 7302  df-lti 7303  df-enq 7343  df-nqqs 7344  df-ltnqqs 7349  df-inp 7462
This theorem is referenced by:  genpdisj  7519  prmuloc  7562  ltprordil  7585  ltpopr  7591  ltexprlemopu  7599  ltexprlemdisj  7602  ltexprlemfl  7605  ltexprlemfu  7607  ltexprlemru  7608  recexprlemdisj  7626  recexprlemss1l  7631  recexprlemss1u  7632
  Copyright terms: Public domain W3C validator