ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lt2halves Unicode version

Theorem lt2halves 9218
Description: A sum is less than the whole if each term is less than half. (Contributed by NM, 13-Dec-2006.)
Assertion
Ref Expression
lt2halves  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  <  ( C  /  2 )  /\  B  <  ( C  / 
2 ) )  -> 
( A  +  B
)  <  C )
)

Proof of Theorem lt2halves
StepHypRef Expression
1 3simpa 996 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  e.  RR  /\  B  e.  RR ) )
2 rehalfcl 9209 . . . . 5  |-  ( C  e.  RR  ->  ( C  /  2 )  e.  RR )
32, 2jca 306 . . . 4  |-  ( C  e.  RR  ->  (
( C  /  2
)  e.  RR  /\  ( C  /  2
)  e.  RR ) )
433ad2ant3 1022 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( C  /  2
)  e.  RR  /\  ( C  /  2
)  e.  RR ) )
5 lt2add 8464 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( ( C  /  2 )  e.  RR  /\  ( C  /  2 )  e.  RR ) )  -> 
( ( A  < 
( C  /  2
)  /\  B  <  ( C  /  2 ) )  ->  ( A  +  B )  <  (
( C  /  2
)  +  ( C  /  2 ) ) ) )
61, 4, 5syl2anc 411 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  <  ( C  /  2 )  /\  B  <  ( C  / 
2 ) )  -> 
( A  +  B
)  <  ( ( C  /  2 )  +  ( C  /  2
) ) ) )
7 recn 8005 . . . . 5  |-  ( C  e.  RR  ->  C  e.  CC )
8 2halves 9211 . . . . 5  |-  ( C  e.  CC  ->  (
( C  /  2
)  +  ( C  /  2 ) )  =  C )
97, 8syl 14 . . . 4  |-  ( C  e.  RR  ->  (
( C  /  2
)  +  ( C  /  2 ) )  =  C )
109breq2d 4041 . . 3  |-  ( C  e.  RR  ->  (
( A  +  B
)  <  ( ( C  /  2 )  +  ( C  /  2
) )  <->  ( A  +  B )  <  C
) )
11103ad2ant3 1022 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  +  B
)  <  ( ( C  /  2 )  +  ( C  /  2
) )  <->  ( A  +  B )  <  C
) )
126, 11sylibd 149 1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  <  ( C  /  2 )  /\  B  <  ( C  / 
2 ) )  -> 
( A  +  B
)  <  C )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2164   class class class wbr 4029  (class class class)co 5918   CCcc 7870   RRcr 7871    + caddc 7875    < clt 8054    / cdiv 8691   2c2 9033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-id 4324  df-po 4327  df-iso 4328  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-iota 5215  df-fun 5256  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-2 9041
This theorem is referenced by:  lt2halvesd  9230
  Copyright terms: Public domain W3C validator