ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovig Unicode version

Theorem ovig 6067
Description: The value of an operation class abstraction (weak version). (Unnecessary distinct variable restrictions were removed by David Abernethy, 19-Jun-2012.) (Contributed by NM, 14-Sep-1999.) (Revised by Mario Carneiro, 19-Dec-2013.)
Hypotheses
Ref Expression
ovig.1  |-  ( ( x  =  A  /\  y  =  B  /\  z  =  C )  ->  ( ph  <->  ps )
)
ovig.2  |-  ( ( x  e.  R  /\  y  e.  S )  ->  E* z ph )
ovig.3  |-  F  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  R  /\  y  e.  S )  /\  ph ) }
Assertion
Ref Expression
ovig  |-  ( ( A  e.  R  /\  B  e.  S  /\  C  e.  D )  ->  ( ps  ->  ( A F B )  =  C ) )
Distinct variable groups:    x, y, z, A    x, B, y, z    x, C, y, z    x, R, y, z    x, S, y, z    ps, x, y, z
Allowed substitution hints:    ph( x, y, z)    D( x, y, z)    F( x, y, z)

Proof of Theorem ovig
StepHypRef Expression
1 3simpa 997 . 2  |-  ( ( A  e.  R  /\  B  e.  S  /\  C  e.  D )  ->  ( A  e.  R  /\  B  e.  S
) )
2 eleq1 2268 . . . . . 6  |-  ( x  =  A  ->  (
x  e.  R  <->  A  e.  R ) )
3 eleq1 2268 . . . . . 6  |-  ( y  =  B  ->  (
y  e.  S  <->  B  e.  S ) )
42, 3bi2anan9 606 . . . . 5  |-  ( ( x  =  A  /\  y  =  B )  ->  ( ( x  e.  R  /\  y  e.  S )  <->  ( A  e.  R  /\  B  e.  S ) ) )
543adant3 1020 . . . 4  |-  ( ( x  =  A  /\  y  =  B  /\  z  =  C )  ->  ( ( x  e.  R  /\  y  e.  S )  <->  ( A  e.  R  /\  B  e.  S ) ) )
6 ovig.1 . . . 4  |-  ( ( x  =  A  /\  y  =  B  /\  z  =  C )  ->  ( ph  <->  ps )
)
75, 6anbi12d 473 . . 3  |-  ( ( x  =  A  /\  y  =  B  /\  z  =  C )  ->  ( ( ( x  e.  R  /\  y  e.  S )  /\  ph ) 
<->  ( ( A  e.  R  /\  B  e.  S )  /\  ps ) ) )
8 ovig.2 . . . 4  |-  ( ( x  e.  R  /\  y  e.  S )  ->  E* z ph )
9 moanimv 2129 . . . 4  |-  ( E* z ( ( x  e.  R  /\  y  e.  S )  /\  ph ) 
<->  ( ( x  e.  R  /\  y  e.  S )  ->  E* z ph ) )
108, 9mpbir 146 . . 3  |-  E* z
( ( x  e.  R  /\  y  e.  S )  /\  ph )
11 ovig.3 . . 3  |-  F  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  R  /\  y  e.  S )  /\  ph ) }
127, 10, 11ovigg 6066 . 2  |-  ( ( A  e.  R  /\  B  e.  S  /\  C  e.  D )  ->  ( ( ( A  e.  R  /\  B  e.  S )  /\  ps )  ->  ( A F B )  =  C ) )
131, 12mpand 429 1  |-  ( ( A  e.  R  /\  B  e.  S  /\  C  e.  D )  ->  ( ps  ->  ( A F B )  =  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373   E*wmo 2055    e. wcel 2176  (class class class)co 5944   {coprab 5945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-sbc 2999  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-iota 5232  df-fun 5273  df-fv 5279  df-ov 5947  df-oprab 5948
This theorem is referenced by:  th3q  6727  addnnnq0  7562  mulnnnq0  7563  addsrpr  7858  mulsrpr  7859
  Copyright terms: Public domain W3C validator