ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovig Unicode version

Theorem ovig 5974
Description: The value of an operation class abstraction (weak version). (Unnecessary distinct variable restrictions were removed by David Abernethy, 19-Jun-2012.) (Contributed by NM, 14-Sep-1999.) (Revised by Mario Carneiro, 19-Dec-2013.)
Hypotheses
Ref Expression
ovig.1  |-  ( ( x  =  A  /\  y  =  B  /\  z  =  C )  ->  ( ph  <->  ps )
)
ovig.2  |-  ( ( x  e.  R  /\  y  e.  S )  ->  E* z ph )
ovig.3  |-  F  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  R  /\  y  e.  S )  /\  ph ) }
Assertion
Ref Expression
ovig  |-  ( ( A  e.  R  /\  B  e.  S  /\  C  e.  D )  ->  ( ps  ->  ( A F B )  =  C ) )
Distinct variable groups:    x, y, z, A    x, B, y, z    x, C, y, z    x, R, y, z    x, S, y, z    ps, x, y, z
Allowed substitution hints:    ph( x, y, z)    D( x, y, z)    F( x, y, z)

Proof of Theorem ovig
StepHypRef Expression
1 3simpa 989 . 2  |-  ( ( A  e.  R  /\  B  e.  S  /\  C  e.  D )  ->  ( A  e.  R  /\  B  e.  S
) )
2 eleq1 2233 . . . . . 6  |-  ( x  =  A  ->  (
x  e.  R  <->  A  e.  R ) )
3 eleq1 2233 . . . . . 6  |-  ( y  =  B  ->  (
y  e.  S  <->  B  e.  S ) )
42, 3bi2anan9 601 . . . . 5  |-  ( ( x  =  A  /\  y  =  B )  ->  ( ( x  e.  R  /\  y  e.  S )  <->  ( A  e.  R  /\  B  e.  S ) ) )
543adant3 1012 . . . 4  |-  ( ( x  =  A  /\  y  =  B  /\  z  =  C )  ->  ( ( x  e.  R  /\  y  e.  S )  <->  ( A  e.  R  /\  B  e.  S ) ) )
6 ovig.1 . . . 4  |-  ( ( x  =  A  /\  y  =  B  /\  z  =  C )  ->  ( ph  <->  ps )
)
75, 6anbi12d 470 . . 3  |-  ( ( x  =  A  /\  y  =  B  /\  z  =  C )  ->  ( ( ( x  e.  R  /\  y  e.  S )  /\  ph ) 
<->  ( ( A  e.  R  /\  B  e.  S )  /\  ps ) ) )
8 ovig.2 . . . 4  |-  ( ( x  e.  R  /\  y  e.  S )  ->  E* z ph )
9 moanimv 2094 . . . 4  |-  ( E* z ( ( x  e.  R  /\  y  e.  S )  /\  ph ) 
<->  ( ( x  e.  R  /\  y  e.  S )  ->  E* z ph ) )
108, 9mpbir 145 . . 3  |-  E* z
( ( x  e.  R  /\  y  e.  S )  /\  ph )
11 ovig.3 . . 3  |-  F  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  R  /\  y  e.  S )  /\  ph ) }
127, 10, 11ovigg 5973 . 2  |-  ( ( A  e.  R  /\  B  e.  S  /\  C  e.  D )  ->  ( ( ( A  e.  R  /\  B  e.  S )  /\  ps )  ->  ( A F B )  =  C ) )
131, 12mpand 427 1  |-  ( ( A  e.  R  /\  B  e.  S  /\  C  e.  D )  ->  ( ps  ->  ( A F B )  =  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 973    = wceq 1348   E*wmo 2020    e. wcel 2141  (class class class)co 5853   {coprab 5854
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-iota 5160  df-fun 5200  df-fv 5206  df-ov 5856  df-oprab 5857
This theorem is referenced by:  th3q  6618  addnnnq0  7411  mulnnnq0  7412  addsrpr  7707  mulsrpr  7708
  Copyright terms: Public domain W3C validator