ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4p3e7 Unicode version

Theorem 4p3e7 9181
Description: 4 + 3 = 7. (Contributed by NM, 11-May-2004.)
Assertion
Ref Expression
4p3e7  |-  ( 4  +  3 )  =  7

Proof of Theorem 4p3e7
StepHypRef Expression
1 df-3 9096 . . . 4  |-  3  =  ( 2  +  1 )
21oveq2i 5955 . . 3  |-  ( 4  +  3 )  =  ( 4  +  ( 2  +  1 ) )
3 4cn 9114 . . . 4  |-  4  e.  CC
4 2cn 9107 . . . 4  |-  2  e.  CC
5 ax-1cn 8018 . . . 4  |-  1  e.  CC
63, 4, 5addassi 8080 . . 3  |-  ( ( 4  +  2 )  +  1 )  =  ( 4  +  ( 2  +  1 ) )
72, 6eqtr4i 2229 . 2  |-  ( 4  +  3 )  =  ( ( 4  +  2 )  +  1 )
8 df-7 9100 . . 3  |-  7  =  ( 6  +  1 )
9 4p2e6 9180 . . . 4  |-  ( 4  +  2 )  =  6
109oveq1i 5954 . . 3  |-  ( ( 4  +  2 )  +  1 )  =  ( 6  +  1 )
118, 10eqtr4i 2229 . 2  |-  7  =  ( ( 4  +  2 )  +  1 )
127, 11eqtr4i 2229 1  |-  ( 4  +  3 )  =  7
Colors of variables: wff set class
Syntax hints:    = wceq 1373  (class class class)co 5944   1c1 7926    + caddc 7928   2c2 9087   3c3 9088   4c4 9089   6c6 9091   7c7 9092
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-addrcl 8022  ax-addass 8027
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-iota 5232  df-fv 5279  df-ov 5947  df-2 9095  df-3 9096  df-4 9097  df-5 9098  df-6 9099  df-7 9100
This theorem is referenced by:  4p4e8  9182  2lgslem3d  15573  2lgsoddprmlem3d  15587
  Copyright terms: Public domain W3C validator