ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4p3e7 Unicode version

Theorem 4p3e7 9076
Description: 4 + 3 = 7. (Contributed by NM, 11-May-2004.)
Assertion
Ref Expression
4p3e7  |-  ( 4  +  3 )  =  7

Proof of Theorem 4p3e7
StepHypRef Expression
1 df-3 8992 . . . 4  |-  3  =  ( 2  +  1 )
21oveq2i 5899 . . 3  |-  ( 4  +  3 )  =  ( 4  +  ( 2  +  1 ) )
3 4cn 9010 . . . 4  |-  4  e.  CC
4 2cn 9003 . . . 4  |-  2  e.  CC
5 ax-1cn 7917 . . . 4  |-  1  e.  CC
63, 4, 5addassi 7978 . . 3  |-  ( ( 4  +  2 )  +  1 )  =  ( 4  +  ( 2  +  1 ) )
72, 6eqtr4i 2211 . 2  |-  ( 4  +  3 )  =  ( ( 4  +  2 )  +  1 )
8 df-7 8996 . . 3  |-  7  =  ( 6  +  1 )
9 4p2e6 9075 . . . 4  |-  ( 4  +  2 )  =  6
109oveq1i 5898 . . 3  |-  ( ( 4  +  2 )  +  1 )  =  ( 6  +  1 )
118, 10eqtr4i 2211 . 2  |-  7  =  ( ( 4  +  2 )  +  1 )
127, 11eqtr4i 2211 1  |-  ( 4  +  3 )  =  7
Colors of variables: wff set class
Syntax hints:    = wceq 1363  (class class class)co 5888   1c1 7825    + caddc 7827   2c2 8983   3c3 8984   4c4 8985   6c6 8987   7c7 8988
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2169  ax-resscn 7916  ax-1cn 7917  ax-1re 7918  ax-addrcl 7921  ax-addass 7926
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-rex 2471  df-v 2751  df-un 3145  df-in 3147  df-ss 3154  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-br 4016  df-iota 5190  df-fv 5236  df-ov 5891  df-2 8991  df-3 8992  df-4 8993  df-5 8994  df-6 8995  df-7 8996
This theorem is referenced by:  4p4e8  9077  2lgsoddprmlem3d  14729
  Copyright terms: Public domain W3C validator