ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4p3e7 Unicode version

Theorem 4p3e7 9126
Description: 4 + 3 = 7. (Contributed by NM, 11-May-2004.)
Assertion
Ref Expression
4p3e7  |-  ( 4  +  3 )  =  7

Proof of Theorem 4p3e7
StepHypRef Expression
1 df-3 9042 . . . 4  |-  3  =  ( 2  +  1 )
21oveq2i 5929 . . 3  |-  ( 4  +  3 )  =  ( 4  +  ( 2  +  1 ) )
3 4cn 9060 . . . 4  |-  4  e.  CC
4 2cn 9053 . . . 4  |-  2  e.  CC
5 ax-1cn 7965 . . . 4  |-  1  e.  CC
63, 4, 5addassi 8027 . . 3  |-  ( ( 4  +  2 )  +  1 )  =  ( 4  +  ( 2  +  1 ) )
72, 6eqtr4i 2217 . 2  |-  ( 4  +  3 )  =  ( ( 4  +  2 )  +  1 )
8 df-7 9046 . . 3  |-  7  =  ( 6  +  1 )
9 4p2e6 9125 . . . 4  |-  ( 4  +  2 )  =  6
109oveq1i 5928 . . 3  |-  ( ( 4  +  2 )  +  1 )  =  ( 6  +  1 )
118, 10eqtr4i 2217 . 2  |-  7  =  ( ( 4  +  2 )  +  1 )
127, 11eqtr4i 2217 1  |-  ( 4  +  3 )  =  7
Colors of variables: wff set class
Syntax hints:    = wceq 1364  (class class class)co 5918   1c1 7873    + caddc 7875   2c2 9033   3c3 9034   4c4 9035   6c6 9037   7c7 9038
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-addrcl 7969  ax-addass 7974
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-iota 5215  df-fv 5262  df-ov 5921  df-2 9041  df-3 9042  df-4 9043  df-5 9044  df-6 9045  df-7 9046
This theorem is referenced by:  4p4e8  9127  2lgsoddprmlem3d  15198
  Copyright terms: Public domain W3C validator