![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 4cn | Unicode version |
Description: The number 4 is a complex number. (Contributed by David A. Wheeler, 7-Jul-2016.) |
Ref | Expression |
---|---|
4cn |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 4re 9061 |
. 2
![]() ![]() ![]() ![]() | |
2 | 1 | recni 8033 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-resscn 7966 ax-1re 7968 ax-addrcl 7971 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-in 3160 df-ss 3167 df-2 9043 df-3 9044 df-4 9045 |
This theorem is referenced by: 5m1e4 9106 4p2e6 9128 4p3e7 9129 4p4e8 9130 4t2e8 9143 4d2e2 9145 8th4div3 9204 div4p1lem1div2 9239 5p5e10 9521 4t4e16 9549 6t5e30 9557 fzo0to42pr 10290 fldiv4p1lem1div2 10377 sq4e2t8 10711 sqoddm1div8 10767 4bc3eq4 10847 4bc2eq6 10848 resqrexlemover 11157 resqrexlemcalc1 11161 resqrexlemcalc3 11163 cos2bnd 11906 flodddiv4 12078 6gcd4e2 12135 6lcm4e12 12228 pythagtriplem1 12406 dveflem 14905 sincosq4sgn 15005 cosq23lt0 15009 sincos6thpi 15018 2lgslem3a 15250 2lgslem3b 15251 2lgslem3c 15252 2lgslem3d 15253 2lgsoddprmlem2 15263 2lgsoddprmlem3c 15266 2lgsoddprmlem3d 15267 ex-exp 15289 ex-fac 15290 ex-bc 15291 |
Copyright terms: Public domain | W3C validator |