| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > 4cn | Unicode version | ||
| Description: The number 4 is a complex number. (Contributed by David A. Wheeler, 7-Jul-2016.) | 
| Ref | Expression | 
|---|---|
| 4cn | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 4re 9067 | 
. 2
 | |
| 2 | 1 | recni 8038 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-resscn 7971 ax-1re 7973 ax-addrcl 7976 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 df-2 9049 df-3 9050 df-4 9051 | 
| This theorem is referenced by: 5m1e4 9112 4p2e6 9134 4p3e7 9135 4p4e8 9136 4t2e8 9149 4d2e2 9151 8th4div3 9210 div4p1lem1div2 9245 5p5e10 9527 4t4e16 9555 6t5e30 9563 fzo0to42pr 10296 fldiv4p1lem1div2 10395 sq4e2t8 10729 sqoddm1div8 10785 4bc3eq4 10865 4bc2eq6 10866 resqrexlemover 11175 resqrexlemcalc1 11179 resqrexlemcalc3 11181 cos2bnd 11925 flodddiv4 12101 6gcd4e2 12162 6lcm4e12 12255 pythagtriplem1 12434 2exp11 12605 dveflem 14962 sincosq4sgn 15065 cosq23lt0 15069 sincos6thpi 15078 2lgslem3a 15334 2lgslem3b 15335 2lgslem3c 15336 2lgslem3d 15337 2lgsoddprmlem2 15347 2lgsoddprmlem3c 15350 2lgsoddprmlem3d 15351 ex-exp 15373 ex-fac 15374 ex-bc 15375 | 
| Copyright terms: Public domain | W3C validator |