| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 4cn | Unicode version | ||
| Description: The number 4 is a complex number. (Contributed by David A. Wheeler, 7-Jul-2016.) |
| Ref | Expression |
|---|---|
| 4cn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4re 9187 |
. 2
| |
| 2 | 1 | recni 8158 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-resscn 8091 ax-1re 8093 ax-addrcl 8096 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-in 3203 df-ss 3210 df-2 9169 df-3 9170 df-4 9171 |
| This theorem is referenced by: 5m1e4 9232 4p2e6 9254 4p3e7 9255 4p4e8 9256 4t2e8 9269 4d2e2 9271 8th4div3 9330 div4p1lem1div2 9365 5p5e10 9648 4t4e16 9676 6t5e30 9684 fzo0to42pr 10426 fldiv4p1lem1div2 10525 sq4e2t8 10859 sqoddm1div8 10915 4bc3eq4 10995 4bc2eq6 10996 resqrexlemover 11521 resqrexlemcalc1 11525 resqrexlemcalc3 11527 cos2bnd 12271 flodddiv4 12447 6gcd4e2 12516 6lcm4e12 12609 pythagtriplem1 12788 2exp11 12959 dveflem 15400 sincosq4sgn 15503 cosq23lt0 15507 sincos6thpi 15516 2lgslem3a 15772 2lgslem3b 15773 2lgslem3c 15774 2lgslem3d 15775 2lgsoddprmlem2 15785 2lgsoddprmlem3c 15788 2lgsoddprmlem3d 15789 ex-exp 16091 ex-fac 16092 ex-bc 16093 |
| Copyright terms: Public domain | W3C validator |