![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 4cn | Unicode version |
Description: The number 4 is a complex number. (Contributed by David A. Wheeler, 7-Jul-2016.) |
Ref | Expression |
---|---|
4cn |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 4re 8701 |
. 2
![]() ![]() ![]() ![]() | |
2 | 1 | recni 7696 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1404 ax-7 1405 ax-gen 1406 ax-ie1 1450 ax-ie2 1451 ax-8 1463 ax-11 1465 ax-4 1468 ax-17 1487 ax-i9 1491 ax-ial 1495 ax-i5r 1496 ax-ext 2095 ax-resscn 7631 ax-1re 7633 ax-addrcl 7636 |
This theorem depends on definitions: df-bi 116 df-nf 1418 df-sb 1717 df-clab 2100 df-cleq 2106 df-clel 2109 df-in 3041 df-ss 3048 df-2 8683 df-3 8684 df-4 8685 |
This theorem is referenced by: 4p2e6 8761 4p3e7 8762 4p4e8 8763 4t2e8 8776 4d2e2 8778 8th4div3 8837 div4p1lem1div2 8871 5p5e10 9150 4t4e16 9178 6t5e30 9186 fzo0to42pr 9884 fldiv4p1lem1div2 9965 sq4e2t8 10277 sqoddm1div8 10331 4bc3eq4 10406 4bc2eq6 10407 resqrexlemover 10668 resqrexlemcalc1 10672 resqrexlemcalc3 10674 cos2bnd 11312 flodddiv4 11473 6gcd4e2 11523 6lcm4e12 11608 ex-exp 12623 ex-fac 12624 ex-bc 12625 |
Copyright terms: Public domain | W3C validator |