| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 4cn | Unicode version | ||
| Description: The number 4 is a complex number. (Contributed by David A. Wheeler, 7-Jul-2016.) |
| Ref | Expression |
|---|---|
| 4cn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4re 9115 |
. 2
| |
| 2 | 1 | recni 8086 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-11 1529 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 ax-resscn 8019 ax-1re 8021 ax-addrcl 8024 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-in 3172 df-ss 3179 df-2 9097 df-3 9098 df-4 9099 |
| This theorem is referenced by: 5m1e4 9160 4p2e6 9182 4p3e7 9183 4p4e8 9184 4t2e8 9197 4d2e2 9199 8th4div3 9258 div4p1lem1div2 9293 5p5e10 9576 4t4e16 9604 6t5e30 9612 fzo0to42pr 10351 fldiv4p1lem1div2 10450 sq4e2t8 10784 sqoddm1div8 10840 4bc3eq4 10920 4bc2eq6 10921 resqrexlemover 11354 resqrexlemcalc1 11358 resqrexlemcalc3 11360 cos2bnd 12104 flodddiv4 12280 6gcd4e2 12349 6lcm4e12 12442 pythagtriplem1 12621 2exp11 12792 dveflem 15231 sincosq4sgn 15334 cosq23lt0 15338 sincos6thpi 15347 2lgslem3a 15603 2lgslem3b 15604 2lgslem3c 15605 2lgslem3d 15606 2lgsoddprmlem2 15616 2lgsoddprmlem3c 15619 2lgsoddprmlem3d 15620 ex-exp 15700 ex-fac 15701 ex-bc 15702 |
| Copyright terms: Public domain | W3C validator |