![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 4cn | Unicode version |
Description: The number 4 is a complex number. (Contributed by David A. Wheeler, 7-Jul-2016.) |
Ref | Expression |
---|---|
4cn |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 4re 9059 |
. 2
![]() ![]() ![]() ![]() | |
2 | 1 | recni 8031 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-resscn 7964 ax-1re 7966 ax-addrcl 7969 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-in 3159 df-ss 3166 df-2 9041 df-3 9042 df-4 9043 |
This theorem is referenced by: 5m1e4 9104 4p2e6 9125 4p3e7 9126 4p4e8 9127 4t2e8 9140 4d2e2 9142 8th4div3 9201 div4p1lem1div2 9236 5p5e10 9518 4t4e16 9546 6t5e30 9554 fzo0to42pr 10287 fldiv4p1lem1div2 10374 sq4e2t8 10708 sqoddm1div8 10764 4bc3eq4 10844 4bc2eq6 10845 resqrexlemover 11154 resqrexlemcalc1 11158 resqrexlemcalc3 11160 cos2bnd 11903 flodddiv4 12075 6gcd4e2 12132 6lcm4e12 12225 pythagtriplem1 12403 dveflem 14872 sincosq4sgn 14964 cosq23lt0 14968 sincos6thpi 14977 2lgsoddprmlem2 15194 2lgsoddprmlem3c 15197 2lgsoddprmlem3d 15198 ex-exp 15219 ex-fac 15220 ex-bc 15221 |
Copyright terms: Public domain | W3C validator |