| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 4cn | Unicode version | ||
| Description: The number 4 is a complex number. (Contributed by David A. Wheeler, 7-Jul-2016.) |
| Ref | Expression |
|---|---|
| 4cn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4re 9084 |
. 2
| |
| 2 | 1 | recni 8055 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-resscn 7988 ax-1re 7990 ax-addrcl 7993 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 df-2 9066 df-3 9067 df-4 9068 |
| This theorem is referenced by: 5m1e4 9129 4p2e6 9151 4p3e7 9152 4p4e8 9153 4t2e8 9166 4d2e2 9168 8th4div3 9227 div4p1lem1div2 9262 5p5e10 9544 4t4e16 9572 6t5e30 9580 fzo0to42pr 10313 fldiv4p1lem1div2 10412 sq4e2t8 10746 sqoddm1div8 10802 4bc3eq4 10882 4bc2eq6 10883 resqrexlemover 11192 resqrexlemcalc1 11196 resqrexlemcalc3 11198 cos2bnd 11942 flodddiv4 12118 6gcd4e2 12187 6lcm4e12 12280 pythagtriplem1 12459 2exp11 12630 dveflem 15046 sincosq4sgn 15149 cosq23lt0 15153 sincos6thpi 15162 2lgslem3a 15418 2lgslem3b 15419 2lgslem3c 15420 2lgslem3d 15421 2lgsoddprmlem2 15431 2lgsoddprmlem3c 15434 2lgsoddprmlem3d 15435 ex-exp 15457 ex-fac 15458 ex-bc 15459 |
| Copyright terms: Public domain | W3C validator |