| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 4p3e7 | GIF version | ||
| Description: 4 + 3 = 7. (Contributed by NM, 11-May-2004.) |
| Ref | Expression |
|---|---|
| 4p3e7 | ⊢ (4 + 3) = 7 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3 9116 | . . . 4 ⊢ 3 = (2 + 1) | |
| 2 | 1 | oveq2i 5968 | . . 3 ⊢ (4 + 3) = (4 + (2 + 1)) |
| 3 | 4cn 9134 | . . . 4 ⊢ 4 ∈ ℂ | |
| 4 | 2cn 9127 | . . . 4 ⊢ 2 ∈ ℂ | |
| 5 | ax-1cn 8038 | . . . 4 ⊢ 1 ∈ ℂ | |
| 6 | 3, 4, 5 | addassi 8100 | . . 3 ⊢ ((4 + 2) + 1) = (4 + (2 + 1)) |
| 7 | 2, 6 | eqtr4i 2230 | . 2 ⊢ (4 + 3) = ((4 + 2) + 1) |
| 8 | df-7 9120 | . . 3 ⊢ 7 = (6 + 1) | |
| 9 | 4p2e6 9200 | . . . 4 ⊢ (4 + 2) = 6 | |
| 10 | 9 | oveq1i 5967 | . . 3 ⊢ ((4 + 2) + 1) = (6 + 1) |
| 11 | 8, 10 | eqtr4i 2230 | . 2 ⊢ 7 = ((4 + 2) + 1) |
| 12 | 7, 11 | eqtr4i 2230 | 1 ⊢ (4 + 3) = 7 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 (class class class)co 5957 1c1 7946 + caddc 7948 2c2 9107 3c3 9108 4c4 9109 6c6 9111 7c7 9112 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 ax-resscn 8037 ax-1cn 8038 ax-1re 8039 ax-addrcl 8042 ax-addass 8047 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-rex 2491 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-br 4052 df-iota 5241 df-fv 5288 df-ov 5960 df-2 9115 df-3 9116 df-4 9117 df-5 9118 df-6 9119 df-7 9120 |
| This theorem is referenced by: 4p4e8 9202 2lgslem3d 15648 2lgsoddprmlem3d 15662 |
| Copyright terms: Public domain | W3C validator |