ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4p3e7 GIF version

Theorem 4p3e7 9066
Description: 4 + 3 = 7. (Contributed by NM, 11-May-2004.)
Assertion
Ref Expression
4p3e7 (4 + 3) = 7

Proof of Theorem 4p3e7
StepHypRef Expression
1 df-3 8982 . . . 4 3 = (2 + 1)
21oveq2i 5889 . . 3 (4 + 3) = (4 + (2 + 1))
3 4cn 9000 . . . 4 4 ∈ ℂ
4 2cn 8993 . . . 4 2 ∈ ℂ
5 ax-1cn 7907 . . . 4 1 ∈ ℂ
63, 4, 5addassi 7968 . . 3 ((4 + 2) + 1) = (4 + (2 + 1))
72, 6eqtr4i 2201 . 2 (4 + 3) = ((4 + 2) + 1)
8 df-7 8986 . . 3 7 = (6 + 1)
9 4p2e6 9065 . . . 4 (4 + 2) = 6
109oveq1i 5888 . . 3 ((4 + 2) + 1) = (6 + 1)
118, 10eqtr4i 2201 . 2 7 = ((4 + 2) + 1)
127, 11eqtr4i 2201 1 (4 + 3) = 7
Colors of variables: wff set class
Syntax hints:   = wceq 1353  (class class class)co 5878  1c1 7815   + caddc 7817  2c2 8973  3c3 8974  4c4 8975  6c6 8977  7c7 8978
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159  ax-resscn 7906  ax-1cn 7907  ax-1re 7908  ax-addrcl 7911  ax-addass 7916
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-rex 2461  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-iota 5180  df-fv 5226  df-ov 5881  df-2 8981  df-3 8982  df-4 8983  df-5 8984  df-6 8985  df-7 8986
This theorem is referenced by:  4p4e8  9067  2lgsoddprmlem3d  14619
  Copyright terms: Public domain W3C validator