Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 4p3e7 | GIF version |
Description: 4 + 3 = 7. (Contributed by NM, 11-May-2004.) |
Ref | Expression |
---|---|
4p3e7 | ⊢ (4 + 3) = 7 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3 8876 | . . . 4 ⊢ 3 = (2 + 1) | |
2 | 1 | oveq2i 5829 | . . 3 ⊢ (4 + 3) = (4 + (2 + 1)) |
3 | 4cn 8894 | . . . 4 ⊢ 4 ∈ ℂ | |
4 | 2cn 8887 | . . . 4 ⊢ 2 ∈ ℂ | |
5 | ax-1cn 7808 | . . . 4 ⊢ 1 ∈ ℂ | |
6 | 3, 4, 5 | addassi 7869 | . . 3 ⊢ ((4 + 2) + 1) = (4 + (2 + 1)) |
7 | 2, 6 | eqtr4i 2181 | . 2 ⊢ (4 + 3) = ((4 + 2) + 1) |
8 | df-7 8880 | . . 3 ⊢ 7 = (6 + 1) | |
9 | 4p2e6 8959 | . . . 4 ⊢ (4 + 2) = 6 | |
10 | 9 | oveq1i 5828 | . . 3 ⊢ ((4 + 2) + 1) = (6 + 1) |
11 | 8, 10 | eqtr4i 2181 | . 2 ⊢ 7 = ((4 + 2) + 1) |
12 | 7, 11 | eqtr4i 2181 | 1 ⊢ (4 + 3) = 7 |
Colors of variables: wff set class |
Syntax hints: = wceq 1335 (class class class)co 5818 1c1 7716 + caddc 7718 2c2 8867 3c3 8868 4c4 8869 6c6 8871 7c7 8872 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 ax-resscn 7807 ax-1cn 7808 ax-1re 7809 ax-addrcl 7812 ax-addass 7817 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-rex 2441 df-v 2714 df-un 3106 df-in 3108 df-ss 3115 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-br 3966 df-iota 5132 df-fv 5175 df-ov 5821 df-2 8875 df-3 8876 df-4 8877 df-5 8878 df-6 8879 df-7 8880 |
This theorem is referenced by: 4p4e8 8961 |
Copyright terms: Public domain | W3C validator |