ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4p3e7 GIF version

Theorem 4p3e7 8960
Description: 4 + 3 = 7. (Contributed by NM, 11-May-2004.)
Assertion
Ref Expression
4p3e7 (4 + 3) = 7

Proof of Theorem 4p3e7
StepHypRef Expression
1 df-3 8876 . . . 4 3 = (2 + 1)
21oveq2i 5829 . . 3 (4 + 3) = (4 + (2 + 1))
3 4cn 8894 . . . 4 4 ∈ ℂ
4 2cn 8887 . . . 4 2 ∈ ℂ
5 ax-1cn 7808 . . . 4 1 ∈ ℂ
63, 4, 5addassi 7869 . . 3 ((4 + 2) + 1) = (4 + (2 + 1))
72, 6eqtr4i 2181 . 2 (4 + 3) = ((4 + 2) + 1)
8 df-7 8880 . . 3 7 = (6 + 1)
9 4p2e6 8959 . . . 4 (4 + 2) = 6
109oveq1i 5828 . . 3 ((4 + 2) + 1) = (6 + 1)
118, 10eqtr4i 2181 . 2 7 = ((4 + 2) + 1)
127, 11eqtr4i 2181 1 (4 + 3) = 7
Colors of variables: wff set class
Syntax hints:   = wceq 1335  (class class class)co 5818  1c1 7716   + caddc 7718  2c2 8867  3c3 8868  4c4 8869  6c6 8871  7c7 8872
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139  ax-resscn 7807  ax-1cn 7808  ax-1re 7809  ax-addrcl 7812  ax-addass 7817
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-rex 2441  df-v 2714  df-un 3106  df-in 3108  df-ss 3115  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-br 3966  df-iota 5132  df-fv 5175  df-ov 5821  df-2 8875  df-3 8876  df-4 8877  df-5 8878  df-6 8879  df-7 8880
This theorem is referenced by:  4p4e8  8961
  Copyright terms: Public domain W3C validator